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We prove that complex networks of interactions have the capacity to regulate and buffer unpredictable
fluctuations in production events. We show that non-bursty network-driven activation dynamics can
effectively regulate the level of burstiness in the production of nodes, which can be enhanced or reduced.
Burstiness can be induced even when the endogenous inter-event time distribution of nodes’ production is
non-bursty. We find that hubs tend to be less susceptible to the networked regulatory effects than low degree
nodes. Our results have important implications for the analysis and engineering of bursty activity in a range
of systems, from communication networks to transcription and translation of genes into proteins in cells.

W hile human perception tends to appreciate regularity in the happening of events, evidence reveals that
in many systems events cluster in bursts, i.e., accumulations of a large number of rapidly occurring
events during short time intervals separated by silent periods. Bursts have been experimentally and

empirically observed in profusion and many models have been proposed to explain and generate them. For
example, traces of human activity are to a great extent imprinted with burstiness. In particular, bursts and heavy-
tails pervade the diversity of human communication channels, from written text1–3, to the frequency of letter4 and
e-mail correspondence5,6, and cell phone calls7,8.

In a different context, key processes in single-cell biology, such as transcription and translation, are particularly
prone to progress in bursts. For instance, mRNA synthesis proceeds in short but intense outbreaks beginning
when coding genes transition from an inactive to an active state9. These bursts have been suggested to affect the
expression of essential genes and even the switching and rhythms of cellular states10–14. This may raise questions
about how cells are able to maintain function in the face of such unpredictable fluctuations, with the hypothesis
that those bursts could be buffered by local or bulk degradation mechanisms9. It is interesting to explore whether
large-scale system mechanisms, like the interconnection of genes in regulatory networks of interactions, have the
capacity to produce similar buffering effects. It has already been observed experimentally that noise properties of
small biological circuits depend on their architecture15 and computationally that the level of synchronized
bursting in neuronal circuits is a direct function of global topology16. In the social sciences, the collective
communication activity of a social online network has been reported to present long-term correlations not
related to the distribution of inter-event times of single users17.

In this work, we show indeed that endogenous burstiness in the production of nodes can be both enhanced or
reduced by stochastic network-driven non-bursty interactions, which activate/inactivate nodes dynamically. We use
complex networks where nodes can present two states, active and inactive. When active, each node produces events
according to a certain endogenous inter-event time probability distribution function y(t). The activation dynamics is
governed by a process propagating in the network akin to the standard Susceptible-Infected-Susceptible epidemic
spreading model18, so that active nodes inactivate at rate li and inactive ones become active upon contact with active
neighbors at rate la per active contact. In all cases, these processes are assumed to follow Poisson statistics. As a result,
we observe that non-bursty network-driven activation dynamics can effectively regulate the level of burstiness in the
production of nodes even when their endogenous production pattern is non-bursty. We find that hubs tend to be less
susceptible to the networked regulatory effects than low degree nodes. This is a general result for systems where the
parameters of dynamics, production, and topology are independent of each other. Note that here we are reversing the
topical question about the macroscopic collective effects of burstiness on dynamical processes running on complex
networks. The bursty activity of nodes, both in models of opinion formation19,20 and epidemic spreading21–23, has
been observed to induce a slowing down of the progression of the dynamical process. Here, we focus instead on the
regulatory effects of networked dynamical interactions on the endogenous bursty activity of individual nodes.

The problem can be posed in terms of a single node l that changes state following Poisson processes with an
instantaneous activation rate la,l —which encodes the network effect on the alternation of activation periods of
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nodes—and inactivation rate li. The activation rate la,l of node l is a
stochastic process that depends on the number of active neighbors of
l at time t. Nevertheless, when node degrees are the relevant feature of
the network topology, once at the steady state, the instantaneous
activation rate of a node of degree k?1 can be replaced by an effec-
tive activation rate lef f (k) depending on the degree distribution P(k)
and degree-degree correlations P(k9jk)24, with a temporal average
value given by

lef f (k)~kla

X
k’

P k’jkð Þ lim
t??

rk’(t)h i~kla�r(k): ð1Þ

Here k is the node degree and rk9(t) is the fraction of active
nodes (prevalence) of degree k9, so that �r(k) is a temporal average
of a degree-weighted prevalence depending on degree-degree
correlations. In uncorrelated networks, P(k9jk) 5 k9P(k9)/Ækæ and
the degree weighted prevalence is degree-independent, so that
lef f (k)~kla�r. This temporal average fluctuates around a constant
value in the stationary state of the endemic phase (see Supplementary
Information).

Such a node changes state following Poisson processes with rates
lef f (k) for activation and li for inactivation and, when active, pro-
duces events according to a general distribution y(t) with average
Ætpæ. For any y(t), the effective inter-event time probability density
function of production events w(t,k) can be analytically calculated as

w(t,k)~
X?
n~0

wn(t,k), ð2Þ

where wn(t,k) is the probability that the time between two consecutive
production events is within the interval (t, t 1 dt) after exactly n
inactive periods. These partial densities can be calculated in terms of
convolution integrals and, in the Laplace space, the sum in Eq. (2) can
be carried out analytically (see Methods for details), yielding the

following expression for ŵ(s,k):
ð?

0
e{stw(t,k)dt

ŵ(s,k)~ŷ(szli)z
g2

i (s)= tp
� �

szlef f (k)
lef f (k)li

{
1{gi(s)= tph i

szli

, ð3Þ

where gi(s)~
1{ŷ(szli)

szli
. We have used that the probability den-

sity for the interval between the activation time and the first produc-

tion event is given by y0(t)~Y(t)= tp
� �

, where Y(t)~
ð?

t
y(t’)dt’ is

the survival probability function. The rationale for this choice is that
the activation event can be regarded as taking place between two
consecutive production events. Since we do not have any other
information, we assume that the time interval between those two
events is greater than the time elapsed between the activation event
and the first production. As a consequence, its probability density
must be proportional to Y(t), and the denominator simply nor-
malises the distribution. Hence, effective inter-event times of pro-
duction events are ruled by the interplay of three key factors: the
endogenous production statistics y(t), the first production event
statistics y0(t), and the activation dynamics through the effective
activation rate lef f (k), that for uncorrelated networks depends line-
arly on degree.

To measure the burstiness of production, we use the burstiness
coefficient B~(CVt{1)=(CVtz1) as defined in Ref. 25, where CVt

is the coefficient of variation CVt~st=mt and mt and st are the mean
and standard deviation of the time between consecutive production
events. With this definition, B 5 1 corresponds to a strongly bursty
production, B 5 0 to a neutral one following a Poisson statistics, and
B 5 21 to a periodic signal. As an example, we now particularize to
the case of a Weibull distribution for production events

y(t)~

ffiffiffiffi
b

2t

r
e{

ffiffiffiffiffi
2bt
p

ð4Þ

with scale parameter (2b)21 adjusting the spread of the distribution,
and shape parameter 1/2 implying a heterogeneous non-Poisonian
distribution such that all nodes have an endogenous production of
events that clusterize in time. Weibull distributions –the stretched
exponential function is the complementary cumulative distribution
function of the Weibull– are used extensively to model heterogen-
eous distribution of events but with finite moments26. In our particu-
lar case, it has the advantage of being analytically solvable. The
endogenous burstiness for a node continuously producing according
to Eq. (4) is B0~(

ffiffiffi
5
p

{1)=(
ffiffiffi
5
p

z1)~0:382, independent of b.
The effective value of the burstiness of a node with interrupted

production due to the network-driven activation/inactivation
dynamics depends on its degree, B(k). To compute it, we need to
calculate the degree-dependent average and standard deviation of
production inter-event times, which can be easily evaluated through
simple derivatives of Eq. (3) evaluated at s 5 0 (see Methods). The
degree dependent coefficient of variation reads

CVt(k)~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1{

ffiffiffiffiffiffiffi
p

�b

2

r
e

�b
2erfc

ffiffiffi
�b

2

r !{1z2�b
1

1z�lef f (k)
� �2 {1

 !vuuuuut , ð5Þ

where we have redefined �b~b=li and �lef f (k)~lef f (k)=li. As a valid-
ation, we display in Fig. 1a the analytical result for B based on Eq. (5)
along with the simulation of a single node whose state changes fol-
lowing Poisson processes with rates �lef f for activation and li~1 for
inactivation, and that intrinsically produces events according to Eq.
(4) with rate �b. The agreement between the analytical surface and the
simulation points is excellent. Both results prove that the level of
endogenous burstiness for continuous production B0 5 0.382 can
be both increased and decreased, as shown also in the projection of
the analytical surface on the �b{�lef f plane in Fig. 1b. The effective
burstiness ranges always between zero burstiness (exponential inter-
event time distribution) in the limit �b?0 and the maximum of 1
when �b??. For high values of �lef f , B is dominated by the interplay
of the endogenous production statistics y(t) and the first production
event statistics y0(t). The range of �b values associated to effective
burstiness around B0 widens with increasing �lef f and the endogenous
production level is recovered only when both �b and �lef f are increased
simultaneously. In contrast, the effective burstiness raises for low
values of �lef f due to the effect of increased inactivation periods, such
that for each �lef f the level of effective burstiness increases with �b.
These results are qualitatively the same for any distribution y(t).

In uncorrelated networks, the proportional dependence of lef f (k)
with degree Eq. (1) implies that the effective burstiness is a decreasing
function of k. To confirm this, we measured B(k) from simulations
on a network with N 5 104 nodes (details in Supplementary
Information). Our results are valid for different degree distributions,
but we used a scale-free network with characteristic exponent c~2:5.
In Fig. 2a, we show simulation results of B(k) for different values of
�la:la=li. For all activation rates, the effective burstiness decreases
with degree. For low degree nodes, �la determines the duration of
inactive periods. Low values of �la (but above the minimum required
to sustain the activity) enable low degree nodes remaining a long time
in the inactive state, which raises their effective burstiness well above
B0, while for high values of �la they behave as high degree nodes
approaching a minimum value of B(k) independent of k, a basal level
below B0. For high degree nodes, B(k) is noticeably below B0. This is
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due to the fact that hubs do not remain in the inactive state much
time since they are usually connected to many active nodes that
constantly reactivate them. This fact, combined with variable values
of �b, can produce levels of effective burstiness different from the
endogenous one (Fig. 2b). In the limit of very small �b, it is indeed
possible to bring effective burstiness to zero since the effective pro-
duction becomes a Poisson process.

Fixing �la, the production shape parameter �b can be varied to
regulate the effective level of burstiness, Fig. 2b, with similar qual-
itative behavior. In both cases, the disparity of effective B(k) values
reaches a maximum at some intermediate parameter levels.
However, �b does not have any limitation to be increased (in our
computational experiments it is varied over four orders of mag-
nitude) so that high-degree nodes can increase their effective bursti-
ness above the endogenous level. Taken together, our results indicate
that the bursty production of nodes can be regulated by network-
driven stochastic activation dynamics. When all nodes produce
equally, the originally uniform endogenous burstiness is split in a
range of values anti-correlated with degree. More in general, low-
degree nodes tend to be more susceptible to the networked regulatory
effects than high-degree nodes, presenting a broader variability of the
effective burstiness as a function of the parameters of both the
dynamical process and the production function.

Finally, we also prove that network-driven activation can induce
burstiness even when the endogenous production of nodes is not
bursty. We let nodes in the active state to produce events with an
exponential inter-event time probability distribution function of rate
a, y(t)~ae{at , which has B0 5 0. Again, calculating the first two

moments of Eq. (3) (see Methods), we obtain

CVt(k)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

2�a

(1z�lef f (k))2

s
, ð6Þ

where �a~a=li. This analytical expression matches almost perfectly
with numerical simulations of a single node whose state changes
following Poisson processes with rates �lef f for activation and li~1
for inactivation, and that intrinsically produces events according to a
exponential inter-event time probability distribution with rate �a,
Fig. 3a. For an exponential distribution, y0(t)~y(t) so that y0(t)
has no role, as expected for a Poisson process. Hence, the effective
burstiness can only be equal or above the endogenous value B0 5 0.
This induced burstiness is explained as a consequence of the fact that
the node may remain in the inactive state for a period of time con-
siderably longer than the average endogenous inter-event time Ætpæ 5

1/a27.
We also simulated exponential production in the same scale-free

network with N 5 104 nodes and characteristic exponent c~2:5 used
in the study with the Weibull distribution. We used different values
of �la with �a~100, Fig. 3b, and different values of �a over four orders
of magnitude with �la~0:4, Fig. 3c. As for bursty production, we find
again that B(k) is always a decreasing function of k (but always above
B0 5 0). Due to their sustained activity, hubs are less susceptible to
display induced burstiness production. In contrast, nodes with low
degree stay in the inactive state for longer periods and are more prone
to present a raised effective burstiness. Qualitatively, both para-
meters �a and �la can be modified to induce burstiness, affecting all
nodes more efficiently for higher values of �a and lower values of �la.

Figure 1 | Regulation of burstiness. (a). Comparison between simulation

data (dots) and the analytical calculation (solid surface and line) of the

effective burstiness B(�b,�lef f ), B . B0 5 0.382 in the blue region and B , B0

5 0.382 in the green one. (b). Projection of burstiness surface in (a) in the
�b,�lef f plane. Colors in the contour plot code for different values of B.

Figure 2 | Network-driven regulation of burstiness. (a). B(k) for different

values of the activation rate �la and fixed �b~3:16, chosen so that a wide

heterogeneity of behaviors can be observed and B0 lies about the middle of

the interval in which B(k) can be varied. (b). B(k) for fixed �la~0:4 and

different values of the production scale parameter �b.
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Again, the disparity of induced burstiness values reaches a maximum
at some intermediate parameter levels.

Different dynamical processes occurring on a network can inter-
play in unexpected ways. We have seen here that the time series of
production events of interacting nodes are affected by network-dri-
ven activation/inactivation dynamics. In a broad range of para-
meters, hubs in a network tend to decrease burstiness in their
endogenous pattern of production, hence helping to maintain a
stable bulk level, at the expenses of low degree nodes being more
pliable to the regulatory effect of the network that tends to amplify
their fluctuations. At the same time, lower degree nodes are more
prone to burstiness induction. In general, hubs tend to be less sus-
ceptible to the networked regulatory effects than low degree nodes.
These results indicate that a heterogenous network structure protects
the functioning of some nodes, the hubs, making low degree nodes
better targets for engineering actions to produce local modifications
of production without critically affecting the behavior of the whole
system. Taken together, our findings suggest that heterogeneous
network interconnectivity may be a strategy in itself developed to

protect complex systems against unpredictable functional fluctua-
tions. However, further research should be conducted to determine
the effects of different activation/inactivation dynamics on node’s
burstiness.

Methods
Calculation of the probability density function w(t,k) in the Laplace space. The
result in Eq. (1) reduces the study of the system to that of a single node that activates
with rate leff (k), deactivates with rate li and produces in the active state with
probability densities y(t) and y0(t). Let ja(t,k) and ji(t) denote the probability
densities for activation and deactivation, and let Ji(t) and Y(t) stand for the survival
probabilities of ji(t) and y(t). We now compute the probability w(t,k)dt that two
consecutive production events take place in the interval (t, t 1 dt) taking into account
the fact that the state of the node can flip any number of times between the two events
(as long as it is in the active state during both productions). It is easy to see that if it
does not flip to the inactive state during the process, w(t,k)dt is given by J i(t)y(t)dt
(the probability that it does not deactivate in a time less than t and that it produces in
the given interval). Similarly, we can compute the probability that it deactivates only
once between both productions; however, in this case we have to integrate for all
possible deactivation and activation times (let us call them t1 and t2, respectively),

yielding
ðt
0

ðt{t1

0

Y(t1)ji(t1)ja(t2,k)y0(t{t1{t2)J i(t{t1{t2)dt1dt2dt. Following the

same procedure, we can write the total probability density as the series

w(t,k) ~J i(t)y(t)z
Ðt
0

Ðt{t1

0
Y(t1)ji(t1)ja(t2,k)y0(t{t1{t2)J i(t{t1{t2)dt1dt2

z
Ðt
0

Ðt{t1

0

Ðt{t1{t2

0

Ðt{t1{t2{t3

0
Y(t1)ji(t1)ja(t2,k)ji(t3)Y0(t3)ja(t4,k)

| y0(t{t1{t2{t3{t4)J i(t{t1{t2{t3{t4)dt1dt2dt3dt4z . . .

ð7Þ

We do not need to solve the series, since we are only interested in the first two
moments of the distribution to obtain B(k). To this end, we make use of the Laplace
transform formalism, which is particularly convenient for two reasons. On the one
hand, the n-th moment of the distribution w(t,k) can be obtained as the n-th derivative

of its transform ŵ(s,k), htni~({1)nŵ(n)(s,k)
���

s~0
. On the other hand, the transform of

a convolution is L (f ? g)(t)f g~f̂ (s):ĝ(s). Since any term in Eq. (7) is a chain of

convolutions, it is not hard to write down ŵ(s,k),

ŵ(s,k) ~L J i(t)y(t)f gzL Y(t)ji(t)f gĵa(s,k)L y0(t)J i(t)
� 	

zL Y(t)ji(t)f gĵa(s,k)L Y0(t)ji(t)
� 	

ĵa(s,k)L y0(t)J i(t)
� 	

z . . .

~L y(t)Ji(t)f gz L Y(t)ji(t)f gL y0 (t)J i(t)f g
L Y0(t)ji(t)f g

P?
n~1

ĵa(s,k)L Y0(t)ji(t)
� 	
 �n

~L y(t)Ji(t)f gzL Y(t)ji(t)f gL y0(t)J i(t)
� 	

ĵa(s,k)

1{ĵa(s,k)L Y0 (t)ji(t)f g ,

ð8Þ

where in the last step we have used that (1{a)
X?

n~1
an~a. We can write the latter

result in terms of y(t) only by plugging the expressions for ja(t,k) and ji(t) into it and
using

L f (t)e{atf g~f̂ (sza), ð9Þ

Ŷ(s)~L
ð?
t

y(t’)dt’

8<
:

9=
;~L 1{

ðt
0

y(t’)dt’

8<
:

9=
;~

1
s

1{ŷ(s)

 �

ð10Þ

and

ŷ0(s,k)~L Y(t)
htpi

� 
~

1
htpi

1
s

1{ŷ(s)

 �

: ð11Þ

The final expression for ŵ(s,k) reads

ŵ(s,k)~ŷ(szli)z
g2

i (s)= tp
� �

szlef f (k)

lef f (k)li
{

1{gi(s)= tp
� �

szli

ð12Þ

with gi(s)~
1{ŷ(szli)

szli
, which is Eq. (3).

Derivation of the coefficient of variation for a Weibull density function. Plugging
the Laplace transform of Eq. (4)

ŷ(s)~

ffiffiffi
p

2

r
e

b

2s

ffiffiffi
b

s

r
erf c

ffiffiffiffi
b

2s

r !
ð13Þ

Figure 3 | Network-driven induction of burstiness. In all graphs, solid

surface and lines correspond to analytical results and dots to simulations.

(a) Comparison between simulation data and the analytical calculation of

the effective burstiness B(�a,�lef f ), B . B0 5 0. (b). B(k) for fixed �a~100
and different values of the activation rate �la. (c). B(k) for fixed �la~0:4 and

different values of the production rate �a.
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into Eq. (12) yields a rather cumbersome expression,

ŵ(s,k) ~e

b

2 szlið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pb

2 szlið Þ

s
erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2 szlið Þ

s !

z

lileff (k)b e

b

2 szlið Þ
ffiffiffiffiffiffiffiffiffiffiffi
2pb

szli

r
erf c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2 szlið Þ

s !
{2

2
64

3
75

2

4s szlið Þ szlizleff (k)ð Þz4lileff (k)b{2lileff (k)be

b

2 szlið Þ
ffiffiffiffiffiffiffiffiffiffiffi
2pb

szli

r
erfc

ffiffiffiffiffiffiffiffiffiffi
b

2 szlið Þ

q� � :
ð14Þ

We can now obtain the first and second moments of w(t,k) deriving the latter equation

and therefore write the expressions for the mean mt(k)~{ŵ(1)(s,k)
���

s~0
and the

standard deviation st(k)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŵ(2)(s,k)

���
s~0

{m2
t(k)

r
in terms of the normalized

parameters �b:
b

li
and �la:

la

li
:

mt(k)~
1zk�r�la

k�r�la
�bli

, ð15Þ

st(k)~
1zk�r�la

k�r�la
�bli

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

2{
ffiffiffiffiffiffiffiffi
2p�b

p
e

�b
2 erfc

ffiffiffi
�b

2

r !{1z2�b
1

1zk�r�la
� �2 {1

 !vuuuuut : ð16Þ

The quotient of both expressions gives Eq. (5).

Derivation of the coefficient of variation for an exponential density function. The
Laplace transform for an exponential y(s) is given by

ŷ(s)~
a

azs
, ð17Þ

with which Eq. (12) becomes

ŵ(s)~
a(leff (k)zs)

s(lizleff (k)zs)za(leff (k)zs)
: ð18Þ

Evaluating its first and second derivatives at s 5 0 and using normalized parameters

�a:
a

li
and �la:

la

li
gives

mt(k)~
1zk�r�la

k�r�la�ali
, ð19Þ

and

st(k)~
1zk�r�la

k�r�la�ali

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

2�a

1zk�r�la
� �2

s
, ð20Þ

from which Eq. (6) can be immediately obtained.
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