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Popularity versus similarity in growing networks
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The principle1 that ‘popularity is attractive’ underlies preferential
attachment2, which is a common explanation for the emergence of
scaling in growing networks. If new connections are made pref-
erentially to more popular nodes, then the resulting distribution of
the number of connections possessed by nodes follows power
laws3,4, as observed in many real networks5,6. Preferential attach-
ment has been directly validated for some real networks (including
the Internet7,8), and can be a consequence of different underlying
processes based on node fitness, ranking, optimization, random
walks or duplication9–16. Here we show that popularity is just one
dimension of attractiveness; another dimension is similarity17–24.
We develop a framework in which new connections optimize certain
trade-offs between popularity and similarity, instead of simply pre-
ferring popular nodes. The framework has a geometric interpretation
in which popularity preference emerges from local optimization. As
opposed to preferential attachment, our optimization framework
accurately describes the large-scale evolution of technological (the
Internet), social (trust relationships between people) and biological
(Escherichia coli metabolic) networks, predicting the probability of
new links with high precision. The framework that we have developed
can thus be used for predicting new links in evolving networks, and
provides a different perspective on preferential attachment as an
emergent phenomenon.

Nodes that are similar have a higher chance of getting connected,
even if they are not popular. This effect is known as homophily in social
sciences17,18, and it has been observed in many real networks19–24. In the
web23,24, for example, an individual creating her new homepage tends
to link it not only to popular sites such as Google or Facebook, but also
to not-so-popular sites that are close to her special interests—for
example, sites devoted to the composer Tartini or to free solo climbing.
These observations suggest the introduction of a measure of attractive-
ness that would somehow balance popularity and similarity.

The simplest proxy for popularity is the node birth time. All other
things being equal, older nodes have more chances to become popular
and attract connections3,4. If nodes join the network one by one, then
the node birth time is simply the node number t 5 1, 2, …. To model
similarity, we randomly place nodes on a circle that represents the
simplest similarity space. That is, the angular distances between nodes
model their similarity distances, such as the cosine similarity or any
other measure22–24. The simplest way to model a balance between popu-
larity and similarity is then to establish new connections that optimize
the product between popularity and similarity. In other words, the
model is simply as follows: (1) initially the network is empty; (2) at
time t $ 1, new node t appears at a random angular position ht on the
circle; and (3) new node t connects to a subset of existing nodes s, s , t,
consisting of the m nodes with the m smallest values of product shst,
where m is a parameter controlling the average node degree k~2m, and
hst is the angular distance between nodes s and t (Fig. 1a, b). At early
times t # m, node t connects to all the existing nodes.

This model has an interesting geometric interpretation, shown in
Fig. 1c. Specifically, after mapping birth time t of a node to its radial
coordinate rt via rt 5 ln t, all nodes lie not on a circle but on a plane—
their polar coordinates are (rt, ht). It then turns out that new nodes

connect simply to the closest m nodes on the plane, except that
distances are not Euclidean but hyperbolic25. The hyperbolic distance
between two nodes at polar coordinates (rs, hs) and (rt, ht) is approxi-
mately xst 5 rs 1 rt 1 ln(hst/2) 5 ln(sthst/2). Therefore the sets of
nodes s minimizing xst or shst for each t are identical. The hyperbolic
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Figure 1 | Geometric interpretation of popularity 3 similarity
optimization. The nodes (dots) are numbered by their birth times, and located
at random angular (similarity) coordinates. On its birth, the new circled node t
in the yellow annulus connects to m old nodes s minimizing shst. The new
connections are shown by the thicker blue links. In a and b, t 5 3 and m 5 1. In
a, node 3 connects to node 2 because 2h23 5 2p/3 , 1h13 5 5p/6. In b, node 3
connects to node 1 because 1h13 5 2p/3 , 2h23 5p. In c, an optimization-
driven network with m 5 3 is simulated for up to 20 nodes. The radial
(popularity) coordinate of new node t 5 20 is rt 5 ln t, shown by the long thick
arrow. This node connects to the three hyperbolically closest nodes. The red
shape marks the set of points located at hyperbolic distances less than rt from
the new node. Arrows on dots show all nodes drifting away from the crossed
origin, emulating popularity fading as explained in the text. The drift speed in
the network shown corresponds to the degree distribution exponent c 5 2.1.
The outer green circle shows the current network boundary of radius rt 5 ln t
expanding with time t as indicated by green arrows.
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distance is then nothing but a convenient single-metric representation
of a combination of the two attractiveness attributes, radial popularity
and angular similarity. We will use this metric extensively below.

The networks grown as described may seem to have nothing in
common with preferential attachment (PA)2–4. Yet we show in
Fig. 2a that the probability P(k) that an existing node of degree k
attracts a connection from a new node is the same linear function of
k in the described model and in PA. It is not surprising then that the
degree distributions in PA and in our model are the same power laws.
In Supplementary Information section IV, we prove that the exponent
c of this power law approaches 2. Preferential attachment thus emerges
as a process originating from optimization trade-offs between popu-
larity and similarity.

However, there are crucial differences between such optimization
and PA. In the latter, new nodes connect with the same probability
P(k) to any nodes of degree k in the network. In the former, new nodes
connect only to specific subsets of such k-degree nodes that are closest
to the new node along the similarity dimension h (Fig. 1c). To quantify,
we compare in Fig. 2b the probability of connection between a pair of
nodes as a function of their hyperbolic distance in the two cases. We see
that close nodes are almost always connected in the optimization
model, whereas in PA the probability of their connection is lower by
an order of magnitude. On the other hand, nodes that are far apart are
never connected in the optimization model, whereas they can be con-
nected in PA. These differences manifest themselves in the strength of
clustering, which is the probability that two nodes connected to the
same node are also connected to each other. In PA, clustering is
asymptotically zero26, whereas it is strong in many real networks5,6.

We show in Supplementary Information section IV that the described
optimization model leads to clustering that is the strongest possible for
networks with a given degree distribution.

The strength of clustering and the power-law exponent can both be
adjusted to arbitrary values via the following model modifications. We
first consider the effect of popularity fading, observed in many real
networks27,28. We note that the closer the node to the centre in Fig. 1c,
the more popular it is: the higher its degree, and the more new con-
nections it attracts, which explains why PA emerges in the model.
Therefore to model popularity fading, we let all nodes drift away from
the centre such that the radial coordinate of node s at time t . s is
increasing as rs(t) 5 brs 1 (1 2 b)rt, where rs 5 ln s and rt 5 ln t, and
parameter b g [0, 1]. This modification is identical to minimizing
sbhst (or sbha

st with b 5 b/a) instead of shst. It changes the power-law
exponent to c 5 1 1 1/b $ 2. If b 5 1, the nodes do not move and
c 5 2. If b 5 0, all nodes move with the maximum speed, always lying
on the circle of radius rt, while the network degenerates to a random
geometric graph growing on the circle. PA emerges at any c 5 1 1 1/b
since the attraction probability P(k) is a linear function of degree k,
P(k) / k 1 m(c 2 2), the same as in PA4. We prove these statements
in Supplementary Information sections IV–VII, where we also show
that the popular fitness model10 can be mapped to our geometric
optimization framework by letting different nodes drift away with
different speeds (Supplementary Information section V).

Because the strongest clustering is due to connections to the closest
nodes, to weaken clustering we allow connections to more-distant
nodes. Connecting to the m closest nodes is approximately the same
as connecting to nodes lying within distance Rt < rt (see Fig. 1c and
Supplementary Information section IV, where we derive the exact
expression for Rt, which controls the average degree in the network).
If new nodes t establish connections to existing nodes s at hyperbolic
distance xst with probability p(xst) 5 1/{1 1 exp[(xst 2 Rt)/T]}, where
parameter T $ 0 is the network temperature (see Supplementary
Information sections IV and VI), then clustering is a decreasing func-
tion of temperature. That is, temperature is the parameter controlling
clustering in the network. At zero temperature, the connection
probability p(xst) is either 1 or 0 depending on whether distance xst

is less or greater than Rt, so that we recover the strongest clustering case
above, where new nodes connect only to the closest existing nodes.
Clustering gradually decreases to zero at T 5 1, and remains
asymptotically zero for any T $ 1 (Supplementary Information
sections IV, VI). At high temperatures T R ‘, the model degenerates
either to growing random graphs, or, remarkably, to standard PA
(Supplementary Information section VII).

To investigate if similarity shapes the structure and dynamics of real
networks as our model predicts, we consider a series of historical snap-
shots of the Internet, the E. coli metabolic network, and the social
network of trust relationships between people, also known as the
web of trust (WoT). The first two networks are disassortative (nodes
of dissimilar degrees are connected with a higher probability), while
the third is assortative (nodes of similar degrees are connected with a
higher probability), and its degree distribution deviates from a power
law. We map these networks to their popularity 3 similarity spaces
(Methods Summary). The mapping infers the radial (popularity) and
angular (similarity) coordinates for all nodes, so that we can compute
the hyperbolic distances between all node pairs, and the probabilities of
new connections as functions of the hyperbolic distance between
corresponding nodes. These probabilities are shown in Fig. 3. In all
the three networks, they are close to the theoretical predictions of our
model.

This finding is important for several reasons. First, it shows that real-
world networks evolve as our framework predicts. Specifically, given
the popularity and similarity coordinates of two nodes, they link with
probability close to the theoretical value predicted by the model. The
framework may thus be used for link prediction, a notoriously difficult
and important problem in many disciplines29, with applications
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Figure 2 | Emergence of PA from popularity 3 similarity optimization.
Two growing networks have been simulated up to t 5 105 nodes, one growing
according to the described optimization model, and the other according to PA.
In both networks, each new node connects to m 5 2 existing nodes. The c R 2
limit is not well-defined in PA, so that c 5 2.1 is used instead as described in the
text. a, The probability P(k) that an existing node of degree k attracts a new link.
The solid line is the theoretical prediction, while the dashed line is a linear
function, P(k) / k. b, The probability p(x) that a pair of nodes located at
hyperbolic distance x are connected. The average clustering (over all nodes) in
the optimization and PA networks is �c~0:83 and �c~0:12, respectively.
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ranging from predicting protein interactions or terrorist connections
to designing recommender and collaborative filtering systems30.
Second, Fig. 3 directly validates our framework and its core mech-
anism. It is not surprising then that, as a consequence, the synthetic
graphs that the model generates are remarkably similar to real net-
works across a range of metrics (Supplementary Information section
IX), implying that the framework can be also used for accurate
modelling of real network topologies. We review related work in
Supplementary Information section X, and to the best of our knowledge,
there is no other model that would simultaneously: (1) be simple and
universal, that is, applicable to many different networks, (2) have a
similarity space as its core component, (3) cast PA as an emergent
phenomenon, (4) generate graphs similar to real networks across a wide
range of metrics, and (5) validate the proposed growth mechanism
directly. Validation is usually limited to comparing certain graph
metrics, such as degree distribution, between modelled and real net-
works; however, this ‘validates’ a consequence of the mechanism, not
the mechanism itself. Direct validation is usually difficult, because pro-
posed mechanisms tend to incorporate many unmeasurable factors—
economic or political factors in Internet evolution, for example. Our
approach is no different in that it cannot measure all the factors or node
attributes contributing to node similarity in any of the considered real
networks. Yet, the angular distances between nodes in our approach can
be considered as projections of properly weighted combinations of all
such similarity factors affecting network evolution, and we can infer
these distances using statistical inference methods, directly validating
the growth mechanism.

To summarize, popularity is attractive, but so is similarity.
Neglecting the latter would lead to severe aberrations. Within the
Internet, for example, a local network in Nebraska would connect
directly to a local network in Tibet, in the same way as on the web, a
person not even knowing about Tartini or free solo climbing would
suddenly link her page to these subjects. The probability of such
dissimilar connections is very low in reality, and the stronger the
similarity forces, the smaller this probability is. Neglecting the network
similarity structure leads to overestimations or underestimations of
the probability of dissimilar or similar connections by orders of mag-
nitude (Fig. 3). However, one cannot tell the difference between our
framework and PA by examining node degrees only. The probability
that an existing node of degree k attracts a new link optimizing popu-
larity 3 similarity is exactly the same linear function of k as in PA
(Fig. 2a). Supplementary Fig. 1 shows that this function is indeed
realized in the considered real networks, re-validating effective PA
for these networks. Therefore the popularity 3 similarity optimization
approach provides a natural geometric explanation for the following
‘dilemmas’ characteristic of PA. On the one hand, PA has been vali-
dated for many real networks, while on the other hand, it requires
exogenous mechanisms to explain not only strong clustering, but also
linear popularity preference, and how such preference can emerge in
real networks, where nodes do not have any global information about
the network structure. As PA appears as an emergent phenomenon in
the framework developed here, our framework provides a simple and
natural resolution to these dilemmas, and this resolution is directly
validated against large-scale evolution of very different real networks.

We conclude with the observation that to know the closest nodes in
the hyperbolic popularity 3 similarity space requires precise global
information about all node locations. However, non-zero tempera-
tures smooth out the sharp connectivity perimeter threshold in
Fig. 1c, thus modelling reality where this proximity information is
not precise and mixed with errors and noise. In that respect, PA is a
limiting regime with similarity forces reduced to nothing but noise.

METHODS SUMMARY
To infer the radial ri and angular hi coordinates for each node i in a real network
snapshot with adjacency matrix aij, i, j 5 1, 2, …, t, we use the Markov Chain
Monte Carlo (MCMC) method described in detail in Supplementary Information.
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Figure 3 | Popularity 3 similarity optimization for three different
networks. a, The growing Internet; b, E. coli metabolic network; and c, pretty-
good-privacy (PGP) web of trust (WoT) between people. Each plot shows the
probability of connections between new and old nodes, as a function of the
hyperbolic (popularity 3 similarity) distance x between them in the real
networks (circles and squares) and in PA emulations (diamonds and triangles).
To emulate PA, new links are disconnected from old nodes to which these
links are connected in the real networks, and reconnected to old nodes
according to PA. For a pair of historical network snapshots S0 (older) and S1

(newer), new nodes are the nodes present in S1 but not in S0, and old nodes are
the nodes present both in S1 and S0. Each plot shows the data for two pairs of
such historical snapshots. The solid curve in each plot is the theoretical
connection probability in the optimization model with the parameters
corresponding to a given real network. Because the probability of new
connections in the real networks is close to the theoretical curves, the shown
data demonstrate that these networks grow as the popularity 3 similarity
optimization model predicts, whereas PA, accounting only for popularity, is off
by orders of magnitude in predicting the connections between similar (small x)
or dissimilar (large x) nodes. To quantify this inaccuracy, the insets show the
ratio between the connection probabilities in PA emulations and in the real
networks, that is, the ratios of the values shown by diamonds and circles, and by
triangles and squares in the main plots. The x-axes in the insets are the same as
in the main plots.
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Specifically, we derive there the exact relation between the expected current degree
�ki of node i and its current radial coordinate ri, which scales as �ki*ert{ri . To infer
the radial coordinates we use the same expression substituting in it the real degrees
ki of nodes instead of their expected degrees. Having inferred the radial coordi-
nates, we then execute the Metropolis-Hastings algorithm to find the node angular
coordinates that maximize likelihood L~Pivjp xij

� �aij 1{p xij
� �� �1{aij , where

p xij
� �

~1
.

1ze xij{Rð Þ=T
h i

is the connection probability in the model, and para-
meters R and T are defined by the average node degree and clustering in the
network via expressions in Supplementary Information section IV. Likelihood
L is the probability that the network snapshot with node coordinates (ri, hi),
defining the hyperbolic distances xij between all nodes, is produced by the model.
The algorithm employs an MCMC process, which finds coordinates hi for all i that
approximately maximize L. Further details are in Supplementary Information
sections II and III, where we also show that the method yields meaningful results
for the considered networks, but not for a network (movie actor collaborations) to
which popularity 3 similarity optimization does not apply.

The nodes in Fig. 3a, b and c are respectively autonomous systems (ASs),
metabolites and Pretty Good Privacy (PGP) certificates associating users’ email
addresses with their cryptographic keys. Parameters (R, T) used to infer the coor-
dinates and to draw the theoretical connection probabilities are (25.2, 0.79), (14.4,
0.77) and (23, 0.59). Each panel of Fig. 3 shows data for two pairs of snapshots:
Fig. 3a, January–April 2007 and April–June 2009; Fig. 3b, S0–S1 and S1–S2 defined
in Supplementary Information section I; and Fig. 3c, April–October 2003 and
December 2005–December 2006. The few missing data points in the empirical
curves (circles and squares) indicate that there are no node pairs at the corres-
ponding distances after the mapping, whereas extra missing points in the PA
emulation curves (diamonds and triangles) indicate that all node pairs at those
distances are not connected after PA emulations, meaning that the PA connection
probability is zero there.
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