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Abstract. A single spherical antenna is capable of measuring the direction and polarization of a
gravitational wave. It is possible to solve the inverse problem using only linear algebra even in the
presence of noise. The simplicity of this solution enables one to explore the error on the solution
using standard techniques. In this paper we derive the error on the direction and polarization
measurements of a gravitational wave. We show that the solid angle error and the uncertainty on
the wave amplitude are direction independent. We also discuss the possibility of determining the
polarization amplitudes with isotropic sensitivity for any given gravitational wave source.

PACS numbers: 0480N, 9555Y, 0430N

1. Introduction

A spherical gravitational wave (GW) antenna ideally has equal sensitivity to gravitational waves
from all directions and polarizations and is able to determine the directional information and
tensorial character of a gravitational wave. The solution for the inverse problem for a noiseless
antenna has been known for some time [1], and an analytic solution for a noisy antenna was
recently found [2]. These solutions are quite elegant as they only require linear algebra to
estimate the wave direction and polarization from the detector outputs.

By monitoring the five quadrupole modes of an elastic sphere, one has a direct
measurement of the effective force of a gravitational wave on the sphere [3]. The standard
technique for doing so on resonant detectors is to position resonant transducers on the surface
of the sphere that strongly couple to the quadrupole modes. A number of proposals have been
made for the type and positions of the transducers [4–6]. What all of these proposals have in
common is that the outputs of the transducers are combined into five ‘mode channels’gm(t)

that are constructed to have a one-to-one correspondence with the quadrupole modes of the
sphere and thus the spherical amplitudes of the gravitational wave [7, 8].
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The mode channelsgm can be collected to form a ‘detector response’ matrix

A =



g1− 1√
3
g5 g2 g4

g2 −g1− 1√
3
g5 g3

g4 g3
2√
3
g5


, (1)

which, in the absence of noise in the detector, is equal to the GW strain tensor, expressed in
laboratory frame coordinates. The latter tensor has the canonical form

H =

 h+ h× 0

h× −h+ 0

0 0 0

, (2)

in the wave frame, and is related toA by an orthogonal transformation—a rotation.H
clearly has an eigenvector,v3, say, with zero eigenvalue which corresponds to the wave
propagation direction. The same therefore applies toA, and this enables the determination of
the wave direction by a straightforward algebraic procedure directly from detector data: it is
the eigenvector ofA with null eigenvalue.

Things change when the detector is noisy: noise is added to the signal in the mode channels,
destroying the equivalence between the data matrixA and the signal matrixH. However, it
has been shown that under ideal noise conditions a modified version of the above procedure
can be used [2]: the eigenvector of the noisyA with eigenvalueclosest to zerois thebest
approximation to the actual incidence-direction of the gravitational wave.

In this paper we shall be taking ananalytic approach to the diagonalization problem,
whereby errors in the estimated GW parameters can be assessed to any desired degree of
accuracy. Inherent in this approach is the unambiguous definition of the incidence-direction
estimate, as well as a Cartesian coordinate convention for it, which rids us of the ambiguities
intrinsically associated to the Euler angle characterization for incidence directions near the
poles. Errors in these quantities will be shown to be incidence-direction independent. In
addition, we shall also address the problem of estimating the GW amplitudesh+ andh×, and
their errors. Previous authors [6, 9] found it impossible to give isotropic estimates of these
quantities, a very strange result for a spherical detector. We explain why these results come
about and we show how the problem can be solved by properly including all the necessary
information.

The paper is organized as follows. We begin in section 2 by deriving analytic expressions
for the eigenvalues ofA. We then use these expressions to find the first-order statistical
errors in the eigenvalues in section 3, followed by the direction estimation error in section 4.
Higher-order corrections to these errors are presented in section 5. In section 6 we discuss the
errors on the polarization amplitude estimates. We explain why past solutions have direction-
dependent errors on these quantities and we describe a maximum-likelihood algorithm, based
on a hypothesis about the physical nature of the source, that fulfils the natural property of
source location independence.

2. Detector response eigenvalues

The detector response matrixA is symmetric and traceless and has the eigenvalue equation

Avk = λkvk, k = 1, 2, 3, (3)
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where the eigenvectors are normalized in the usual way

vk · vl = δkl . (4)

Expanding equation (3) we find

λ3
k − g2λk −D = 0, (5)

where we have defined

g2 ≡ g2
1 + g2

2 + g2
3 + g2

4 + g2
5 (6a)

D ≡ det(A). (6b)

Solving this cubic equation we find the eigenvalues ofA to be

λk = − 2√
3
g cosθk, k = 1, 2, 3, (7)

where

θk = 1
3[θ + 2(k − 1)π ], and cosθ = −3

√
3

2

D

g3
. (8)

Thek = 3 eigenvalue is identically zero in the absence of noise, so it will generally be the
one closest to zero in the presence of noise. Random fluctuations may eventually change this
(more likely for low signal-to-noise ratio (SNR)), but we shall always take the corresponding
eigenvectorv3 as the best approximation to the direction of the source. The amplitude of
the waveh can be calculated in many ways from the mode channels (for example,g is an
estimate for the amplitude), but the semi-difference of the other two eigenvalues will give the
best estimate [2],

h = 1
2(λ2 − λ1). (9)

3. Eigenvalue errors

We assume that the mode channelsgm have uncorrelated noise with zero mean and variance
σ 2
gm
≡ E {(δgm)2}. The lowest-order statistical errors in the eigenvalues are easily calculated

by

σ 2
λk
=

5∑
m=1

(
∂λk

∂gm

)2

σ 2
gm
, (10)

where the derivatives of the eigenvalues are given by
∂λk

∂gm
= − 2√

3

gm

g
cosθk +

∂D

∂gm
sinθk, (11)

and the derivatives of the determinantD are
∂D

∂g1
= − 4√

3
g1g5− g2

3 + g2
4, (12a)

∂D

∂g2
= − 4√

3
g2g5 + 2g3g4, (12b)

∂D

∂g3
= −2g3

(
g1− g5√

3

)
+ 2g2g4, (12c)

∂D

∂g4
= 2g4

(
g1 +

g5√
3

)
+ 2g2g3, (12d)

∂D

∂g5
= 1√

3

(−2g2
1 − 2g2

2 + g2
3 + g2

4 + 2g2
5

)
. (12e)
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Figure 1. The results of a numerical simulation describing the variance of the first eigenvalue for
a range of SNR. The chain curve was computed by a 1000 trial Monte Carlo simulation for the
range of SNR. The broken curve is the error found from the first-order analytic expression and the
full curve includes the second-order corrections.

 

Figure 2. The results of a numerical simulation describing the variance of the second eigenvalue
for a range of SNR. The chain curve was computed by a 1000 trial Monte Carlo simulation for the
range of SNR. The broken curve is the error found from the first-order analytic expression and the
full curve includes the second-order corrections.
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Figure 3. The results of a numerical simulation describing the variance of the third eigenvalue for
a range of SNR. The chain curve was computed by a 1000 trial Monte Carlo simulation for the
range of SNR. The broken curve is the error found from the first-order analytic expression and the
full curve includes the second-order corrections.

If the variances on the mode channels are equal then it is easily seen that equations (10) and
(11) lead to

σ 2
λk
= 4

3σ
2
g , k = 1, 2, 3, (13)

whereσ 2
g is the variance on any one mode channel. Note that from equation (13) all three

eigenvalues have equal variance to first order. Cross correlations between these eigenvalues
are also easily calculated, and for equal mode channel variances they are equal for all pairs
(λk, λ

′
k):

σλkλ′k = − 2
3σ

2
g , k, k′ = 1, 2, 3. (14)

Shown in figures 1–3 is this variance as a function of the SNR= g2/σ 2
g . Also shown

are the results of a Monte Carlo-type simulation of the errors which take into account the
higher-order perturbations at low values of SNR. As shown, the analytic expressions match
the simulated errors for high SNR. For low SNR discrepancies arise between the analytic and
simulated values. This is within expectations since equation (13) is only accurate for large
SNR. A higher-order correction will be considered below.

4. Direction estimation error

We assume that the eigenvectorv3 points in the propagation direction of the gravitational
wave. We want to estimate the fluctuations in the determination of this direction caused by the
presence of noisy fluctuations in the mode channels. We represent withδ a difference between
a given quantity and its ideal value if there were no noise (i.e.δv3 is the difference between the
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position calculated from noisy data and its real position in the sky). We now take equation (3)
for k = 3 and consider fluctuations in it. If these are not too large (high SNR) we can retain
only first-order terms

[A− λ3]δv3 = −[δA− δλ3]v3. (15)

This is an equation forδv3, but the matrix[A− λ3] is not invertible. The only consequence of
this is that we cannot determine the component ofδv3 which is parallel tov3 itself. The
orthogonal components (those parallel tov1 and v2) can easily be found by multiplying
equation (15) on the left byv1 andv2

v1 · δv3 = − 1

λ1− λ3
v1δAv3, (16)

v2 · δv3 = − 1

λ2 − λ3
v2δAv3. (17)

An appropriate assessment of the error on a direction measurement is the solid angle error
1�. Since|v3| = 1, this error is given by

1� = π |1v3|2, (18)

where|1v3|2 is the quadratic error in the determination ofv3. To find it we need to calculate
the expectation of the squared modulus of the above fluctuations,

|1v3|2 = E
{
(v1 · δv3)

2 + (v2 · δv3)
2
} = E{∣∣∣∣v1δAv3

λ1− λ3

∣∣∣∣2 +

∣∣∣∣v2δAv3

λ2 − λ3

∣∣∣∣2}. (19)

First-order calculations only require us to take expectations inδA, while leaving the rest
untouched,

δA =
5∑

m=1

Amδgm, (20)

where we have defined

Am ≡ ∂A

∂gm
. (21)

Explicitly,

A1 =

 1 0 0

0 −1 0

0 0 0

, A2 =

 0 1 0

1 0 0

0 0 0

, A3 =

 0 0 0

0 0 1

0 1 0

,

A4 =

 0 0 1

0 0 0

1 0 0

, A5 =


−1/
√

3 0 0

0 −1/
√

3 0

0 0 2/
√

3

.
(22a)

We thus have

|1v3|2 =
5∑

m=1

[
(v1Amv3)

2 + (v2Amv3)
2
]σ 2

gm

g2
. (23)
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Again, setting the variances on the mode channels equal toσ 2
g , the sum in equation (23)

can easily be done, giving

|1v3|2 = 2
σ 2
g

g2
. (24)

From equation (24) we see that the error in the incidence direction is independent of this
direction, as expected of an omnidirectional antenna. Substituting this into (18) we find

1� = 2π

SNR
. (25)

This expression is in perfect agreement with the solid angle estimation error found by Zhou
and Michelson who used a maximum-likelihood technique to estimate the wave direction [6].
This is not surprising as the two methods of estimating the wave direction have been shown
to be equivalent (though the assumptions behind each are quite different) [2]. The advantage
of our approach is that, by using unit vectors (Cartesian components), we are all the time free
from the anomalously high errors and correlations intrinsically associated with the Euler angle
parametrization.

In figure 4 we show the solid angle estimation error as a function of the SNR. Also
shown are the results of a Monte Carlo-type simulation of the errors. As shown, the analytic
expressions match the simulated errors for high SNR. Deviations, however, appear for lower
values of SNR. This again is due to the insufficiency of the first-order analytical estimates of
the errors. In the next section we present improved theoretical estimates of the errors by going
one order beyond the first in the calculations of variances.

Figure 4. The results of a numerical simulation describing the solid angle direction estimation
error1� of a source direction measurement due to a finite signal-to-noise ratio. The chain curve
was computed by a 1000 trial Monte Carlo simulation for the range of SNR. The broken curve is
the error found from the first-order analytic expression and the full curve includes the second-order
corrections.



3042 S M Merkowitz et al

5. Higher-order corrections

In order to improve our theoretical understanding of the error behaviours of the Monte Carlo
simulations displayed in figures 1–4 we need to go one step beyond the linear error terms of
equations (10) and (23). This requires calculations of higher-order derivatives for the added
terms, and then the resulting general expressions become quite complicated. They somewhat
simplify for equal mode channel variances, but are still rather cumbersome. For example, the
next-order correction to the eigenvalues, assuming the mode channel noises are zero-mean
independent Gaussian processes, is given by (see the appendix)

σ 2
λk
= 4

3
σ 2
g +

( 5∑
m,m′=1

∂λk

∂gm

∂3λk

∂gm∂gm′∂gm′
+

1

2

∂2λk

∂gm∂gm′

∂2λk

∂gm∂gm′

)
σ 4
g , k = 1, 2, 3. (26)

After rather long algebra it is found that

σ 2
λk
= 4

3
σ 2
g − 2

(
1 + sin2 θk

)σ 4
g

g2
. (27)

It turns out that the series forσ 2
λk

convergesvery slowlyfor low SNR, so that equation (26)
only constitutes an improvement on (10) for a rather limited range of SNR (see figures 1–3).
Equation (27) shows that the errors inλ1 andλ2 split from the error inλ3 for low values of
SNR, and reproduces the observed behaviour thatσ 2

λ3
falls belowσ 2

λ1
andσ 2

λ2
. It is a reasonable

approximation toσ 2
λ3

for SNRs of between 30 and 6, but it is not quite as good as regardsσ 2
λ1

andσ 2
λ2

for those values of SNR. Higher-order terms would be required for an improvement,
but these imply still much longer calculations of derivatives of the eigenvalues up to the fifth
order, as can be seen in equation (A9) of the appendix.

Similar corrections can be applied to the incidence-direction error estimate of
equation (24). They appear to be given by

|1v3|2 = 2
σ 2
g

g2

(
1 +

σ 2
g

g2

)−1

(28)

for equal mode channel variances,σ 2
g . Solid angle errors can be directly inferred from here:

1� = 2π

SNR
(1 + SNR−1)−1. (29)

As shown in figure 4, the above theoretical prediction is a better approach to the behaviour
observed in the numerical simulations than is equation (25). For SNRs of less than 2,
equation (29) is also insufficient.

It is important to remind ourselves that for very low SNR the uncertainties on the direction
estimation are so large that the measurement is almost meaningless. Zhou and Michelson
decided that a minimum SNR of 10 in energy was necessary for a direction measurement [6].
Looking at figure 4 this lower limit seems reasonable, thus it is only necessary to have accurate
analytical expressions down to that level.

6. Polarization amplitudes

We now come to the discussion of errors in the polarization amplitudesh+ andh×. It is easily
shown that the uncertainty on the measurement of the polarization amplitudes is direction
independent if the source position is known ahead of time [6], but it has been claimed that
in the unknown direction case there is a strong direction dependence [9]. This is disturbing
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given that a spherical detector is equally sensitive to waves of all polarization and direction.
We argue in this section that the difficulties in finding isotropic estimates ofh+ andh× are
ultimately due to the use of unsuitable criteria to set up those estimates. We discuss a more
natural procedure, based on data set processing, that leads to a solution of this problem.

To understand why a simple estimate of the errors leads to direction dependences, let us
look at the basics of the solution to the inverse problem. We are given three eigenvectors
and three eigenvalues, but these are not independent. The eigenvectors are orthogonal, so
we actually only obtain two pieces of information from them. We use that information to
determine the direction of the wave. Next, the strain tensor is traceless so the third eigenvalue
can be determined from the other two, therefore, we only obtain two pieces of information from
them. We use one of them (actually a combination of two) to obtain the wave amplitude. Past
reasoning suggested that we can use the last piece of information to determine the polarization
angle. This is wrong. The last eigenvalue does not tell us the polarization, but rather is related
to the scalar component of the GW (or lack thereof). We assume this to be zero for GR, so
this can be interpreted as a measurement of the non-zeroness of this component. The fact that
we decide that this should be zeroa priori does not give us additional information about the
polarization, only the level of noise in our system. Without any additional information we
have an under-determined system which will lead to direction-dependent errors as seen in [9].

The additional piece of information needed is the polarization angleα: the angle between
the GW’s axes and the eigenvectorsv1 andv2 perpendicular to the incidence-directionv3. To
this end, we submit our diagonal form of the matrixA to a rotation of angleα aboutv3 to
obtain best estimates ofh+ andh× by the formulae

h+ = h cos 2α, (30a)

h× = h sin 2α, (30b)

where the pure and uncorrelated noise term inh+ dropped out. The GW amplitudeh ≡
(h2

+ +h2
×)

1/2 has been shown to have a best estimate given by equation (9).h can be determined
with isotropic sensitivity since that is the case withλ1 andλ2, as we have just seen. For a
fixedα, equations (30a) and (30b) give us an estimate ofh+ andh× in the presence of noise in
the detector.

We can use the results of section 3 to see that

σ 2
+ = cos2 2ασ 2

g (31a)

σ 2
× = sin2 2ασ 2

g (31b)

σ+× = − 1
2 sin 4ασ 2

g (31c)

and these errors are indeed isotropic, for they only depend onσg.
In the absence of further information on the specificphysicalnature of the source,any

polarization angleα is valid, as the canonical form of the tensor (2) is invariant to rotations about
the third axis. A particular choice ofα is thus a matter of taste in this case, and equations (31a)–
(31c) give the correct error estimates. A common way [1] to resolve the arbitrariness inα is
to set the first Euler angle in the rotation relating the laboratory frame to the wave frame equal
to zero.

However, this is very much an observer-dependent criterion, since detectors at different
locations would claim different values forh+ andh×, even if they agreed on seeing thesame
source. Errors inh+ andh× based on such a criterion have been shown, for example, by [9] to be
strongly direction dependent, which is certainly not surprising. It is, however, paradoxical that
a spherical detector should prefer certain directions to others to detect a GW signal, therefore
this must be reassessed. We now propose a more consistent solution.
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It is clear from the above discussion that any criterion to resolve the arbitrariness inα, and
therefore to estimateh+ andh×, should be establishedrelative to the GW source, be it known
ahead of time or based on a hypothesis to be checkeda posteriori.

Let us, for concreteness, consider acoalescing binary systemas the GW source [10].
The signal generated by such a system is given by somewhat complicated functions of the
spacetime variables and a number of system parameters; it will not be necessary for our
purposes to consider in detail the explicit form of such functions (see, for example, [11]), it
will suffice to use formal expressions indicating the signal dependences:

h+ = h+(r, t;K), (32a)

h× = h×(r, t;K). (32b)

Herer is the source position, andt is the time.K stands for theset of characteristic source
parameters, which in this case include the masses of the stars, the inclination of the orbital
plane, the semimajor axis, the eccentricity of the orbit, the periastron position, etc. Note that
these amplitudes are referred to a set ofsourceaxes, so they are independent of the detector’s
location.

The usual way to estimate the parametersK is to resort to classical statistics [12], as has
been done, for example, in [13] for interferometric detectors or in [9] for spherical detectors.
The fundamental quantity required by such a method is thelikelihood function,3, which is a
functional of the (unknown) signal parametersand the detector data.

We then proceed as follows: we construct the likelihood function associated with the
hypothesis that equations (30a) and (30b) be a fit to equations (32a) and (32b) for suitable
values of the parametersK. It will thus have the generic form

3 = 3(h;α;K). (33)

Standard manipulations of3 yield both best estimates of the signal parametersK andof
the polarization angleα, as well as errors and cross correlations between any pair of these—it
is recalled that such are identified as the coefficients of thecovariance matrix, which is the
inverse of the matrix of second derivatives of3 [12].

We shall not attempt to give a detailed discussion of this process here. The important
point to stress is that in the approach just proposed, we have managed to haveh as the only
combination of actual data entering the likelihood function3. Errors and cross correlations
between parameter estimates will thus ultimately be functions only of the errors and cross
correlations between the eigenvalue estimates,λ1 andλ2, which we have proved in section 3
to be direction independent.

So not onlyα but also the source parametersK can be determined with isotropic sensitivity
by means of a spherical GW detector. The same therefore applies to the GW amplitudesh+

andh×, as indeed expected.
Thequantitativeestimation of the errors inh+ andh× cannot, however, be given explicitly

until the full parameter estimation problem has been completely solved, as interactions between
all those estimates will strongly affect one another.

7. Discussion

With analytic expressions for the uncertainties on the eigenvectors and the eigenvalues of
the mode channel matrix (1) we can turn our attention to the physical interpretation of these
values. An unambiguous selection ofλ3 can be made on the basis that it is thethird root
in equation (7). This will usually be the one closest to zero. Then the other two represent
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the amplitude measurement. As proved in [2], the best estimate of the GW amplitude is the
semi-difference of these two,(λ2 − λ1)/2.

The third eigenvalue ideally should be zero if general relativity is correct. Once noise is
introduced this is no longer the case, but the variance on this eigenvalue gives us a level of
the ‘non-zeroness’. One can imagine setting a threshold on this eigenvalue that is a function
of σλ3 (a function of the SNR) to veto any candidate events that have an excessiveλ3. Many
non-GW sources are likely to produce a non-zeroλ3, therefore becoming easily identified and
discarded.

The errors in both eigenvalues and eigenvectors are direction independent. The last step
in the analysis is the splitting of the GW amplitudeh into the usualh+ andh× components. We
have shown that this can be accomplished by making suitable reference to the source properties,
whereby an isotropic sensitivity to these quantities is obtained. This solves the paradox of the
anisotropies in the determination ofh+ andh×, and stresses the fact that the most fundamental
magnitudes to estimate from the detector data are the eigenvalues and eigenvectors of the mode
channel matrix: these aresource independent, and any further progress in signal deconvolution
explicitly requires reference to the source properties, be they known ahead of time or stated in
the form of a hypothesis to be tested.
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Appendix. Quadratic error calculations

Let g = (g1, . . . , gn) be a set ofn independent Gaussian random variables, with mean
µ = (µ1, . . . , µn) and variancesσ 2

i (i = 1, . . . , n). Let f (g) be a regular function of its
arguments. Becauseg is a random variable so isf (g), although it will of course be generally
non-Gaussian. We want to find the mean and variance off (g), and to this end we Taylor
expand it around the meanµ:

f (g) = f (µ) + fiδgi + 1
2fij δgiδgj + 1

6fijkδgiδgj δgk + · · · (A1)

where

fij... ≡ ∂f

∂gi∂gj . . .

∣∣∣∣
g=µ

and δgi ≡ gi − µi (A2)

and the usual convention of summation over repeated indices is adopted in (A1).
The mean off (g) is its expectation value,E{f (g)}, while its variance is the difference

σ 2
f = E{f 2(g)} − [E{f (g)}]2. (A3)

Expectation values are to be taken on the basis of the expansion (A1). Given thatg is a set
of independent Gaussian variables, the expectation of the product of anoddnumber ofδg’s is
zero, while

E{δgiδgj } = δij σ 2
i (A4)

E{δgiδgj δgkδgl} = δij δklσ 2
i σ

2
k + δikδjlσ

2
i σ

2
j + δilδjkσ

2
i σ

2
j (A5)
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etc, where as an exception no summation over repeated indices is assumed in these expressions.
If the assumption is made that all theg’s have equal variances,σ 2, then one easily finds

E{f (g)} = f + 1
2fiiσ

2 + 1
8fiijj σ

4 + 1
48fiijjkkσ

6 + · · · (A6)

wheref is a shorthand forf (µ). Likewise,

[E{f (g)}]2 = f 2 + ffiiσ
2 + 1

4(ffiijj + fijfij )σ
4 + 1

24(ffiijjkk + 3fijfijkk)σ
6 + · · · , (A7)

and

E{f 2(g)} = f 2 + (ffii + fifi)σ
2 + 1

4(ffiijj + 4fifijj + 3fijfij )σ
4

+ 1
24(ffiijjkk + 6fifijjkk + 15fijfijkk + 10fijkfijk)σ

6 + · · · . (A8)

So, finally,

σ 2
f = fifiσ 2 + (fifijj + 1

2fijfij )σ
4 + 1

4(fifijjkk + 2fijfijkk + 5
3fijkfijk)σ

6 + · · · . (A9)
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