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Natural numbers can be divided in two nonoverlapping infinite sets, primes and composites, with composites
factorizing into primes. Despite their apparent simplicity, the elucidation of the architecture of natural numbers
with primes as building blocks remains elusive. Here, we propose a new approach to decoding the architecture
of natural numbers based on complex networks and stochastic processes theory. We introduce a parameter-free
non-Markovian dynamical model that naturally generates random primes and their relation with composite
numbers with remarkable accuracy. Our model satisfies the prime number theorem as an emerging property and a
refined version of Cramér’s conjecture about the statistics of gaps between consecutive primes that seems closer
to reality than the original Cramér’s version. Regarding composites, the model helps us to derive the prime factors
counting function, giving the probability of distinct prime factors for any integer. Probabilistic models like ours
can help to get deeper insights about primes and the complex architecture of natural numbers.
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I. INTRODUCTION

Prime numbers have fascinated and puzzled philosophers,
mathematicians, physicists, and computer scientists alike for
the past two and a half thousand years. A prime is a natural
number that has no divisors other than 1 and itself; every
natural number greater than 1 that is not a prime is called a
composite. Despite the apparent simplicity of these definitions,
the hidden structure in the sequence of primes and their
relation with the set of natural numbers are not yet completely
understood [1]. There is no practical closed formula that sets
apart all of the prime numbers from composites [2], and many
questions about primes and their distribution among the set
of natural numbers still remain open. Indeed, most of the
knowledge about the sequence of primes stands on unproved
theorems and conjectures.

The mystery of primes is not a mere conundrum of pure
mathematics. Unexpected connections can be discovered be-
tween primes and different topics in physics. For instance, the
Riemann ζ function ζ (s)—a sum over all integers equivalent to
a product over all primes—has been considered as a partition
function [3–5], such that its sequence of nontrivial zeros—
encoding information about the sequence of primes—is similar
to the distribution of eigenvalues of random Hermitian matri-
ces used in classically chaotic quantum systems to describe
the energy levels in the nuclei of heavy elements [6]. This idea
traces back to the Hilbert-Pólya conjecture [7], which states
that the zeros of the ζ (s) function might be the eigenvalues
of some Hermitian operator on a Hilbert space. Indeed, the
Riemann ζ function plays an integral role not only in quantum
mechanics but in different branches of physics, from classical
mechanics to statistical physics [8]. The interpretation of prime
numbers or the Riemann ζ zeros as energy eigenvalues of
particles appears also in statistical mechanics, as illustrated for
instance by the Riemann gas concept as a toy model for certain
aspects of string theory [9]. Recently, interesting connections
have also been found between primes and self-organized
criticality [10], or primes and quantum computation [11,12]
(see Ref. [13] for an extensive bibliographical survey between
the connection of number theory and physics). The impor-
tance of primes transcend theoretical aspects, and practical

applications include public key cryptography algorithms [14]
and pseudorandom number generators [15].

One of the most promising approaches to solve the enigmas
of number theory is the use of probability theory and stochastic
processes. Akin to chaotic dynamical systems, prime numbers,
albeit purely deterministic, appear to be scattered throughout
natural numbers in a nonhomogeneous random fashion.
Indeed, for n � 1 the probability that a randomly chosen
number in a “small” neighborhood of n is prime is given by
[16]

Pn ∼ 1

ln n
. (1)

This is equivalent to the well-known prime number theorem
[17], which states that the prime counting function π (N )—
counting the number of primes up to N—approaches N/ ln N

in the limit of N → ∞, i.e.,

π (N ) ∼
∫ N

2

dx

ln x
≡ Li(N ) ∼ N

ln N
, (2)

where Li(N ) is the offset logarithmic integral function. Taking
advantage of this apparent randomness, Cramér formulated
a simple model [18,19] where each integer n is declared as
a “prime” with independent probability given by Eq. (1). The
model—which generates sequences of random primes that are,
obviously, in agreement with the prime number theorem—
allowed him to “prove,” in a probabilistic sense, his famous
conjecture about gaps between consecutive primes [19].

Cramér’s probabilistic model plays, still today, a funda-
mental role when formulating conjectures concerning primes.
However, it presents three major drawbacks: (1) It does not
“explain” the prime number theorem; instead, it is an input
of the model. (2) Random primes in the model are totally
uncorrelated, whereas there are both short- and long-range
correlations in the sequence of real primes. (3) Finally, it
says nothing about the relation between prime and composite
numbers. In this paper, we combine a complex network
approach with the theory of stochastic processes to introduce a
parameter-free non-Markovian dynamical model that naturally
generates random primes as well as the relation between
primes and composite numbers with remarkable accuracy. Our
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model is in agreement with Eqs. (1) and (2) and satisfies a
modified version of Cramér’s conjecture about the statistics of
gaps between consecutive primes that seems closer to reality
than the original Cramér’s version. Regarding composites, the
model helps us to derive the prime factors counting function,
giving the probability of distinct prime factors for any integer.

II. BIPARTITE NETWORK OF NATURAL NUMBERS

Primes are the building blocks of natural numbers. The
fundamental theorem of arithmetic states that any natural
number n > 1 can be factorized uniquely as

n = p
α1
1 p

α2
2 · · ·pαk

k · · · , (3)

where pi is the ith prime and αi are nonnegative integers.
From a complex networks perspective, natural numbers can
be thought of as a weighted bipartite network with two types
of nodes, primes and composites. A composite n is linked to
primes pi with weights αi according to the factorization in
Eq. (3), as shown in Fig. 1.

For a given network size N , the probability that a randomly
chosen prime inside the network is connected to kp different
composites, that is, the degree distribution P (kp) for prime
numbers, can be exactly determined in terms of the prime
counting function as (see Appendix A for details)

P (kp) =
π

(
N

kp+1

) − π
(

N
kp+2

)
π (N )

, (4)

with kp = 0,1, · · · ,�N
2 �, where �x� stands for the floor

function. Using the prime number theorem, Eq. (2), it is easy
to see that in the limit N/kp � 1 this distribution behaves
as P (kp) ∼ k−2

p . Quite surprisingly, we obtain a scale-free
network with an exponent −2, very similar to many real
complex networks, like the Internet [20], and similar to

FIG. 1. (Color online) Example of the bipartite network of natu-
ral numbers grown up to size 20. Orange circles represent composite
numbers and green squares prime numbers. The degree of a prime, kp ,
is the number of distinct composites to which it is connected, whereas
its strength, sp , is the sum of its weighted connections. Similarly, the
degree of a composite, kc, is its number of distinct prime factors and
its strength, sc, the total number of prime factors.

the degree distribution of the causal graph of the de Sitter
space-time [21]. As we shall show, this is a consequence of an
effective preferential attachment rule induced by the growth
mechanism.

The result in Eq. (4) allows us to derive a simple but yet
interesting identity relating π (n) and the number of distinct
prime factors of any integer n, ω(n). We name ω(n) the prime
factors counting function. We start from the trivial identity
[N − 1 − π (N )]〈kc〉 = π (N )〈kp〉, where kc is the degree of a
composite (or its number of distinct prime factors). Plugging
Eq. (4) into this identity, we obtain

N∑
n=2

ω(n) =
�N/2�∑
i=1

π

(
N

i

)
. (5)

Replacing the sum by an integral, we can approximate this
expression as

N∑
n=2

ω(n) ≈ N

∫ N

2

π (x)dx

x2
∼ N ln ln N + O(N ). (6)

The final asymptotic behavior is directly related to the
Hardy-Ramanujan theorem [22], which now becomes a simple
consequence of the prime number theorem. Function ω(n) can
be easily computed from Eq. (5) as

ω(n) =
�n/2�∑
i=1

[
π

(n

i

)
− π

(
n − 1

i

)]
. (7)

Notice that if n is a composite number, then ω(n)
is, in our network representation, its degree. There-
fore, the degree distribution of composite numbers
is given by P (kc) = [

∑N
n=2 δω(n),kc

− δkc,1π (N )]/[N − 1 −
π (N )]. Besides, Eq. (7) naturally leads to a set of arithmetic
functions giving the sum of the prime factors of n raised to
any exponent (see Appendix C).

Equations (4) and (7) are a remarkable result. Beyond
potential applications to find better estimates of function ω(n),
they state that the local properties of the network of natural
numbers are fully determined by the prime counting function
π (N ) alone. We then expect that any model producing random
versions of the network that is able to reproduce well the
prime counting function, π (N ), will also reproduce well the
large scale of the real network topology.

III. MODELING THE EVOLUTION AND STRUCTURE
OF NATURAL NUMBERS

The order relation implicit in the natural numbers allows
us to consider the bipartite network representation of natural
numbers as a growing system. In the growing process, natural
numbers join the network sequentially and try to connect to
already existing primes. Those new numbers that succeed
in this process are said to be composites, otherwise, they
become prime numbers. In this paper, we show that a very
simple connection rule based upon a soft version of Eq. (3)
generates networks with the same architecture as that of
the real network of natural numbers. Taking advantage of
the apparent randomness of prime numbers, we develop
a stochastic model that generates growing bipartite natural
number networks connecting random primes with composites.
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The growth process only imposes two basic facts trivially
implied by the fundamental theorem of arithmetic, that is,
that the product of the prime factors of a natural number n

must be n, and that n can have no more than one prime factor
larger than

√
n. The model starts by assuming that number

2 is a prime and adds natural numbers n � 3 sequentially. It
proceeds as follows:

(1) Each new number n that joins the network tries to
connect to already existing random primes pi � √

n with
independent probabilities 1/pi one by one, starting from the
smallest prime, until the first connection is established.

(2) If number n first connects to an existing prime p smaller
or equal to

√
n, it keeps trying to connect sequentially to

existing primes in the range [Rm,RM ], with Rm = p and RM =√
n′, and n′ = n

p
. Each time n connects to a new random

prime p′ the range is redefined with Rm,new = p′ and n′
new =

n′
old
p′ . If p′ > RM,new or n does not get new connections in the

evaluation range, n is connected to the prime closest to R2
M

and a new node n + 1 is added to the system.
(3) If number n does not connect to any existing prime

smaller or equal to
√

n, it is declared as a prime and a new
number n + 1 is added to the system.

The intuition behind the second step in our model is as
follows. In the case of the real primes, a composite number
n must have at least a prime factor smaller or equal to

√
n.

Let p be the smallest prime factor of n. Then, n/p is also
an integer number that is either a prime or, else, it can be
expressed as a product of prime factors. However, in the latter
case the smallest prime factor of n/p cannot be smaller than
p because this would contradict the assumption that p is the
smallest prime factor of n. Then, the smallest prime factor of
n/p, let it be p′, must lie in the closed interval [p,

√
n/p]. The

same logic can now be applied to the prime factors of the ratio
n/(pp′) until n is fully factorized. Our model tries to mimic in
a stochastic manner this factorization property of composite
numbers, with the difference that, in our case, n/p may not
be an integer. Thus, at the end of a stochastic realization of
our model, every number n is either declared as a prime or
it is a composite such that the product of its prime factors is
approximately n.

It is worth noticing the following properties of the model.
(i) The model has no tunable parameters. (ii) It is a generative
model, in the sense that the model generates simultaneously
the number of primes and how primes and composites are
connected. (iii) The model is able to generate multiple
connections between composite and a prime numbers with no
extra mechanism. (iv) The model is non-Markovian because
the probability of a number being prime depends on the whole
history of the stochastic process. At this respect, it is important
to notice that all results in this paper are considered to be
averages over all histories of the stochastic process. We also
notice that the first step of the algorithm is similar to the random
sieve proposed by Hawkins [23–26], the main difference being
that the random sieve does not provide connections between
composite and prime numbers.

A. The prime counting function

The analytical treatment of the model is quite involved due
to its non-Markovian character (see Appendix D). However,
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FIG. 2. (Color online) Comparison of the prime counting func-
tion π (N ), the prime number theorem Eq. (2), and the prime counting
function of our random model �(N ), averaged over 1000 realizations.
The inset shows the corresponding relative errors. The relative error
of the random model is one order of magnitude smaller than the one
of Eq. (2).

it is possible to work out a relatively simple mean-field
approximation. For instance, the probability that number n

is a prime according to the model, Pn, satisfies the following
recurrence relation:

Pn = e
∑�√n�

i=2 ln [1− Pi
i

] ≈ e−∫ √
n Px

x
dx, (8)

where in the last term we have considered n as a continuous
variable and approximated ln [1 − Pi

i
] by −Pi

i
. It is easy to

see that Eq. (8) is equivalent to the following nonlinear and
nonlocal differential equation

dPn

dn
= −PnP

√
n

2n
. (9)

Although the full analytical solution of this equation is
difficult to obtain, it is quite easy to check that, asymp-
totically, Pn behaves as Pn ∼ 1/ ln n and, thus, our model
satisfies the prime number theorem as an emerging property.
Figure 2 shows a comparison between the real π (N ), the one
generated by our model �(N ), and Eq. (2). As expected,
limN→∞ π (N )/�(N ) = 1. However, for finite sizes the
relative error of our model with respect to the real π (N ) is
one order of magnitude smaller than the one given by Eq. (2).

B. Network properties

One of the strengths of our model lays in its ability to repro-
duce, not only the sequence of primes, but also the connections
of each composite number. To check to what extent our model
fulfills the fundamental theorem of arithmetic, we measure
the relative error between a composite and its factorization
according to the model, ε(N ), as follows. Let ci be the ith
composite in a network of size N and let c̄i be its stochastic
factorization, then we define xi ≡ c̄i/ci . The relative error
is then ε(N ) ≡ 1 − 〈x〉 = 1 − [N − 1 − �(N )]−1 ∑

i c̄i/ci ,
where 〈·〉 means the population average. In Fig. 3, we show
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FIG. 3. (Color online) Average relative error ε(N ) = 1 − 〈x〉 be-
tween a composite number and its factorization in the network as a
function of the system size N and the standard deviation of the ratio
x, σx(N ).

ε(N ) as a function of the system size N averaged over 1000
network realizations. As it can be seen, this error decreases
as a power law of the size of the system ε(N ) ∼ N−α with
α ≈ 0.5. We also show the standard deviation of xi , which
also approaches zero in the large system size limit. These two
results indicate that the model fulfills the fundamental theorem
of arithmetic for relatively small numbers with high accuracy.

The model also does an excellent job at reproducing well
the large-scale topology of the real network. The left column in
Fig. 4 shows the complementary cumulative degree distribu-
tions of primes and composites as compared to the real ones for
the network grown up to N = 106. In both cases the agreement
is excellent. The right column in Fig. 4 shows the strength
distributions for primes and composites, that is, the equivalent
to the left column measures when multiple links between
primes and composites are considered (see Fig. 1). Again, the
agreement between the model and the real network is excellent.
This result is particularly interesting as it shows that our model
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FIG. 4. (Color online) Comparison between the complementary
cumulative distribution functions of the real bipartite network of
natural numbers of size N = 106 and the network generated by our
model averaged over 1000 realizations. The left column shows the
unweighted properties and the right column the weighted ones. The
legend explaining line types applies to the four plots.

is able to capture statistical properties of the multiplicities
of composites’ factorizations, i.e., the αs in Eq. (3). In
particular, it recovers that Pc(sp) behaves asymptotically as
s−2
p , as expected from the almost linear correlation between

strength and degree. Other topological properties are explored
in Appendices B and E. For instance, it is possible to show that
the model satisfies the Erdös-Kac theorem [27], which states
that [ω(n) − ln ln n]/

√
ln ln n is, de facto, a random variable

that follows the standard normal distribution.

C. The Cramér’s conjecture revisited

Cramér’s conjecture provides an absolute upper bound on
the gaps between consecutive primes. Using his model, Cramér
was able to prove that [19]

lim sup
i→∞

pi+1 − pi

ln2 pi

= 1 (10)

and conjectured that the same relation also holds for real
primes. Here, we study the statistics of prime gaps in our
model and refine Cramér’s conjecture for real primes. We
start by noticing that in our model, all numbers between two
perfect squares have the same probability of being primes and,
more importantly, they are conditionally independent given
their common history. Therefore, as a first approximation,
we consider that every number in the interval [m2,(m + 1)2);
m = 2,3, · · · has an independent probability Pn = 1/ ln n of
being a prime, where n = m2. Under this assumption, the
probability that a given gap G within the interval is smaller than
g is Prob{G < g} = 1 − (1 − Pn)g−1 [28]. If we assume that
there are NG = 2

√
nPn gaps within the interval, the probability

that the largest gap Gm within the interval is smaller than gm is

Prob{Gm < gm} = [1 − (1 − Pn)gm−1]NG. (11)

The average largest gap can be evaluated from this expression,
yielding

〈Gm〉 =
(

1

Pn

− 1

2

)
HNG

+ O(Pn) ∼ 1

2
ln2 n, (12)

where HNG
= ∑NG

k=1 k−1 is the NGth harmonic number
(interestingly, a similar approach has been recently proposed
in Ref. [29]). We can now define the normalized largest gap
as Gm ≡ Gm/〈Gm〉, which distribution function satisfies

Prob{Gm < gm} ∼ e−N
1−gm
G . (13)

In the limit n → ∞, NG → ∞ and this distribution becomes
a step function (although very slowly). Thus, the largest gap
stops being a random variable to become a deterministic
quantity equal to ln2 n/2. Notice that this bound is twice as
small as the bound given by Cramér’s conjecture, apparently
suggesting that it could be false for real primes.

To check our prediction, we compute the gaps between real
primes up to 1011. We divide this set in intervals between
perfect squares and for each such interval we evaluate the
largest gap. The top plot in Fig. 5 shows the series of largest
gaps and the inset shows the normalized largest gaps obtained
by using Eq. (12). As it can be seen, after normalization,
the series becomes a stationary one but its average is not 1,
as we would expect from our model, but 2c ≈ 0.88, with c

a constant below 1/2. As we see, our model suffers from
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FIG. 5. (Color online) Gaps between primes. Top. Series of
largest gaps between real primes in intervals between perfect squares.
Top inset: The same series normalized by using Eq. (12). In both
plots, primes are considered up to 1011. Bottom: Complementary
cumulative distribution function of the normalized largest gaps for
real primes and the model in the range [9 × 1010,1011]. To make
evident the slow convergence of the distribution, we also show
extrapolations from Eq. (13) for N = 1015 and N = 1025.

the same problems affecting Cramér’s model in what respects
short-range correlations induced by small primes. For instance,
the probability of n being a prime if n − 1 is a prime is zero
for real primes (except for 2 and 3), whereas our model would
predict a nonzero probability; in addition, the probabilistic
prediction that the number of primes in a short interval of
length y about x is given by y/ ln x was proved false by Maier
[30,31]. Some other deviations from real primes on a very
large scale have also been reported [32,33]. In the case of
Cramér’s model, it is possible to make heuristic corrections
allowing one to reach right answers on several properties of
real primes, like the number of twin primes below N [34].
In general, these corrections have only a numerical effect on
the studied property since the bear model already predicts the
right asymptotic behavior as a function of N . The same type
of heuristics can be, in principle, applied to our model and
we expect them to account for the observed discrepancy. For
instance, a simple modification assumes that the probability
of n being a prime is zero if the previous number is a prime,
whereas it is (ln n − 1)−1 otherwise. This simple modification
preserves the prime number theorem and leads to a better
estimate of constant 2c ≈ 0.92.

Even more interesting is the analysis of the fluctuations
of the normalized largest gaps around their average. A
preliminary analysis of their distribution suggests that largest
gaps of real primes behave as in the model after a global

rescaling. Thus, to have a coherent comparison between the
model and real primes, we divide the series shown in the inset
of Fig. 5 by 2c so that its average is equal to 1, like in the model.
We then evaluate the complementary cumulative distribution
function for all largest gaps in the range [9 × 1010, 1011] and
compare it with the one obtained from numerical simulations
of our model; see bottom plot in Fig. 5. Interestingly, both
distributions are nearly indistinguishable. This implies that
fluctuations of largest gaps for real primes are governed
asymptotically by the distribution Eq. (13). From this equation,
we can evaluate the expected number of gaps up to N that are
above a certain fraction α of the average largest gap, with
α � 1, that is,

# gaps with Gm > α ≈
√

N∑
n=1

(
ln n

n

)α−1

. (14)

This quantity diverges when 1 � α < 2 as O(N1−α/2 lnα−1 N )
and as O(ln2 N ) for α = 2. Putting all the pieces together, we
refine Cramér’s conjecture as follows. For all real prime gaps
Gi ≡ pi+1 − pi , with pi < N and N → ∞, we have

Gi < αc ln2 pi, for all but O(N1− α
2 lnα−1 N ) gaps,

Gi < 2c ln2 pi, for all but O(ln2 N ) gaps. (15)

For any α > 2, the number of gaps above this threshold is
O(1). Notice, however, that this asymptotic behavior is only
reached for extremely large values of N . For not so large
values it is better to replace ln2 pi in Eq. (15) by 2[ln pi −
1/2][ln (2

√
pi/ ln pi) + γ ], with γ the Euler-Mascheroni con-

stant, as derived from Eq. (12). We check these predictions
for all gaps up to 1011 in Fig. 6. We measure empirically
the number of gaps that, up to a given size N , satisfy Gi >

2αc[ln pi − 1/2][ln (2
√

pi/ ln pi) + γ ] and compare them
with the predictions in Eq. (15). Aside from statistical errors,
our predictions agree well with the empirical measures.
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FIG. 6. (Color online) Number of gaps with Gm > α for different
values of α as a function of N rescaled by the factor lnα−1 N .
According our estimates, this should behave as a power law of the
form N 1−α/2. Dashed lines are power law fits, which exponents are
shown in the inset plot and compared to the theoretical prediction
1 − α/2.
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IV. CONCLUSIONS

Probabilistic approaches to understand usual patterns of
primes as well as their extreme statistics brought a new
perspective to the study of prime numbers. The big first step by
Cramér was significantly developed afterwards bringing this
kind of approach to maturity. With our work, we introduce a
new dimension that allows us to understand primes and their
statistical properties not in isolation but as building blocks
of natural numbers. We have introduced a parameter-free
non-Markovian stochastic model based on a bipartite complex
network representation that naturally generates random primes
as well as the relation between primes and composite numbers
with remarkable accuracy. Our model satisfies the Erdös-Kac
theorem, as well as the prime number theorem and a refined
version of Cramér’s conjecture about the statistics of gaps
between consecutive primes that seems closer to reality than
the original Cramér’s version. Even though we are still
unable to fully understand the finer details about primes and
the complex architecture of natural numbers, probabilistic
models like ours provide valuable tools helping to elaborate
conjectures about primes and, perhaps, also to prove results on
number theory. Beyond the implications in mathematics, our
stochastic model generates the sequence of random primes and
some of their statistical correlations as an emergent property,
which allows probabilistic computations of number theoretical
approaches to open problems in physics involving the Riemann
ζ function, which plays an integral role in different branches
from quantum mechanics to condensed matter.
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APPENDIX A: BIPARTITE NETWORK REPRESENTATION
OF NATURAL NUMBERS

In this section we derive the expressions that characterize
the bipartite network representation of natural numbers pre-
sented in the paper.

1. Degree distribution

The degree distribution for primes in the network can be
derived reasoning as follows: a prime number p > N/2 has
degree kp(p) = 0 since its product by any other prime number
is greater than N and, hence, it cannot belong to the network
(the subscript in kp is used to denote the degree of primes;
we use kc to refer to the degree of composites). Identically, if
N/3 < p � N/2, p has a multiple that belongs to the network
(2p � N ). In general,

p ∈
(

N

n + 1
,
N

n

]
⇔ kp(p) = n − 1, (A1)

since mp � N,m = 2, . . . ,n but (n + 1)p > N . This directly
leads to the expression for P (kp):

P (kp) = #{p : p prime : kp(p) = kp}
#{p : p prime � N}

=
#
{
p : p prime ∈ (

N
kp+2 , N

kp+1

]}
#{p : p prime � N}

=
π

(
N

kp+1

) − π
(

N
kp+2

)
π (N )

. (A2)

This expression is, interestingly, similar to a probability
measure with multifractal properties used in Ref. [35]. We
can derive an approximation for Eq. (A2) using the fact that,
according to the prime number theorem,

lim
x→∞

π (x)

x/ ln(x)
= 1. (A3)

We first evaluate the complementary cumulative distribution
function Pc(kp) = ∑

k�kp
P (k), which reads

Pc(kp) =
π

(
N

kp+1

)
π (N )

. (A4)

Using the prime number theorem, in the limit N/kp � 1 this
function behaves as

Pc(kp) ≈ 1

kp

(
1 − ln kp

ln N

) ∼ 1

kp

, (A5)

from where it follows that the degree distribution behaves
nearly as a power law:

P (kp) ∼ k−2
p . (A6)

Another useful relation is

kp(p) =
⌊

N

p

⌋
− 1, (A7)

which can be proved considering Eq. (A1):

p ∈
(

N

n + 1
,
N

n

]
⇔ N

p
∈ [n,n + 1) ⇔

⌊
N

p

⌋
= n ⇔ kp(p)

=
⌊

N

p

⌋
− 1.

2. Strength of a prime number

The expression for the strength of a prime number p in the
network of size N is

sp(p) =
�logp N�∑

n=1

⌊
N

pn

⌋
− 1. (A8)

The explanation of this formula is rather straightforward.
The prime p inside the bipartite network is connected to
�N/p� − 1 composites [Eq. (A7)]. Nevertheless, �N/p2� of
these composites can be divided by p twice. In general, there
are �N/pn� composites which can be divided by p n times.
Since the strength of the prime p is defined as the sum of the
weights of all its connections, we can simply sum all these
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terms as

sp(p) = kp(p) +
∞∑

n=2

⌊
N

pn

⌋
=

∞∑
n=1

⌊
N

pn

⌋
− 1.

An upper limit for the sum can be found by taking into account
the fact that, if pn > N ⇒ N/pn < 1 and, hence, such term
does not contribute to the sum. Let us then find the values of
n that need to be considered:⌊

N

pn

⌋
> 0 ⇔ N

pn
� 1 ⇔ pn � N ⇔ n � logp N.

This allows us to write the upper limit in Eq. (A8), since the
last term to be added is the one for n = �logp N�.

3. Strength distribution

A reasonable approximation of the strength as a function
of the degree kp is given by

sp(kp) ∼ N (kp + 1)

N − (kp + 1)
− 1, (A9)

which shows that weights do not play an important role in our
representation since, for small values of kp, Eq. (A9) exhibits a
linear behavior [sp(kp) ∼ kp]. This result is a consequence of
the fact that only primes less or equal to

√
N have connections

with weight greater than 1, which implies that the fraction
of nodes for which this is possible, 1/

√
N , tends to zero in

the thermodynamic limit. Equation (A9) can be derived by
approximating Eq. (A8) as

sp(p) =
�logp N�∑

n=1

⌊
N

pn

⌋
− 1 ∼

∞∑
n=1

N

pn
− 1 = N

p − 1
− 1.

(A10)

We can finally use Eq. (A7) to give an approximate value of
p(kp), i.e., a prime with degree kp,

kp(p) =
⌊

N

p

⌋
− 1 ⇒ p ∼ N

kp + 1
. (A11)

The substitution of Eq. (A11) into Eq. (A10) yields Eq. (A9).
The cumulative strength distribution can also be derived as

follows. From Eq. (A10), we see that any prime p such that

p � N

sp + 1
+ 1

must have strength less or equal to sp. We can therefore
approximate Pc(sp) = Prob{S > sp} = 1 − Prob{S � sp},
where S stands for the strength of a randomly chosen prime, as

Pc(sp) ∼ 1 −
π (N ) − π

(
N

sp+1 + 1
)

π (N )
=

π
(

N
sp+1 + 1

)
π (N )

∼
π

(
N

sp+1

)
π (N )

∼ N

(sp + 1) ln
(

N
sp+1

) ln N

N

= 1

1 − ln(sp+1)
ln N

1

sp + 1
∼ s−1

p ,

so we see that, indeed, P (sp) ∼ s−2
p .

APPENDIX B: ONE-MODE PROJECTION

Given a bipartite network, we can build a new graph
composed exclusively of nodes belonging to one of its classes
by performing the so called one-mode projection. Since no
pair of these nodes can be initially connected by the definition
of bipartite network, linking must be ruled by some other

FIG. 7. (Color online) One-mode projection for N = 289. Primes greater than N/2 do not appear in the picture since they are all
unconnected. Self-loops are not depicted either. Primes {2,3,5,7,11,13,17} form a clique, and there are no links between nodes not belonging
to it.
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criteria in the new graph. The most usual one is to establish
a connection between two nodes with a weight equal to the
number of common nodes to which they were both connected
in the original network. Hence, whenever two nodes had no
common neighbors in the bipartite network, they are left
unconnected.

In order to go deeper into the study of the statistical
properties of prime numbers, we have performed a one-mode
projection onto that class in the bipartite network discussed so
far following the latter criteria (see Fig. 7) and, in addition,
allowing self-loops to exist in the resulting graph (whenever
a perfect power of a prime exists in the bipartite network,
we regard that prime as connected to itself, thus forming a
self-loop).

As can be seen in Fig. 7, and as the results presented in this
section imply, this graph has a structure made of a maximally
connected core containing all the primes less or equal to

√
N

that is surrounded by nodes connected to some but not all
of the inner nodes. In addition, the inner two prime numbers
are, the strongest the connection among them. This suggests
that this network could exhibit a self-similar behavior; i.e., it
could be statistically invariant under a network renormalization
procedure. This interesting property would allow us to predict
some of its statistical properties on any scale.

1. Degree distribution

The degree k of a prime number p in the one-mode
projection of a bipartite network of size N is given by

k(p) = π

(
N

p

)
. (B1)

This expression is justified as follows: p can be connected to
any prime number p′ as long as pp′ � N . As a consequence,
in order to obtain the number of primes p′ to which p can be
connected, we must count the number of primes p′ � N/p,
which is precisely the result in Eq. (B1). Notice that, if p �√

N , p is counted as well; hence, this expression takes self-
loops into account.

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

1 101 102 103 104 105

P
c(

k)

k

Real
Model

FIG. 8. (Color online) Complementary cumulative degree distri-
bution Pc(k) of the one-mode projection graph for both the real and
the stochastic model networks.

Using pk to denote the kth prime, the degree distribution
P (k) is exactly determined by

P (k) =
π

(
N
pk

)
− π

(
N

pk+1

)
π (N )

, p0 ≡ 1. (B2)

This result starts with the observation that if a prime p

has degree k, it must be connected to the first k prime
numbers p1,p2, . . . ,pk . Hence, ppk � N but ppk+1 > N .
In order to count how many primes are subject to these
conditions, we must count the number of primes in the interval
p ∈ (N/pk+1,N/pk], which can be written in terms of the
prime counting function as π (N/pk) − π (N/pk+1). Dividing
that quantity by the amount of primes in the graph π (N ) yields
Eq. (B2). We must take into account that, in the particular case
of k = 0, we are considering the primes p for which pp1 > N

and p � N , i.e. the primes p ∈ (N/p1,N ]. Defining p0 ≡ 1,
the latter equation is extended to that case.

In Fig. 8 we compare Eq. (B2) with its stochastic homolo-
gous.

2. Weight of a connection and strength of a prime

The weight of the connection ωij between two primes pi

and pj is

ωij =
⌊

N

pipj

⌋
. (B3)

This quantity is defined as the number of composites in the
bipartite network to which both primes are connected. Such
composites must be divisible by both pi and pj , i.e., by pipj .
Since there are �N/pipj� such numbers among the first N

natural numbers, Eq. (B3) effectively gives ωij .
The strength of a prime number is straightforward to obtain

from the latter result. By its definition, the only thing to do is
adding the weights of the connections to all the other prime
numbers in the network, from p1 to pπ( N

p
) (notice that if pi >

N/p the weight of the connection is equal to zero). This leads
to

s(p) =
π( N

p
)∑

i=1

⌊
N

ppi

⌋
. (B4)

Equation (B4) also adds the weight of the self-loop of p if
existing (if p2 � N ).

3. Clustering coefficient

We can derive an expression for the clustering coefficient
C(p) of a prime number inside this graph. This quantity
is a real number C(p) ∈ [0,1] representing the fraction of
possible links between the neighbors of p that actually exist.
This coefficient affects many processes in networks such as
percolation, dynamic processes, etc., and it is closely related
to the small-world property as well as to hidden geometries.
In our case, if p �

√
N , it can only be connected to primes

pi �
√

N . As the product of two numbers below
√

N cannot
be greater than N , all the primes pi �

√
N are connected

to each other. Consequently, the clustering coefficient is
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C(p) = 1 for any p �
√

N . However, when p �
√

N , the expression for C(p) is given by

C(p) =
[π (p) − 1]

{
2
[
π

(
N
p

) − 1
] − π (p)

} + 2
{ ∑π(

√
N)

j=π(p)+1

[
π

(
N
pj

) − j
] + π

(√
N

) − 1
}

π
(

N
p

)[
π

(
N
p

) − 1
] . (B5)

To derive Eq. (B5) we need to count the number of connections
between the primes to which p is connected. Let us compute
several quantities separately.

(1) The number of neighbors of the prime p that we need
to consider is not k(p) as given by Eq. (B1), but k ≡ k(p) −
1 = π (N

p
) − 1; since p �

√
N , we must correct the fact that

Eq. (B1) is counting the self-loop of prime p. The number of
possible links among these nodes is, allowing the possibility
for self-loops to exist,

Lmax = 1

2
k(k + 1) = 1

2
π

(
N

p

)[
π

(
N

p

)
− 1

]
. (B6)

(2) The number of self-loops existing among the neighbors
of p, Lsl, can be derived easily; a self-loop exists if and only
if the corresponding prime is less or equal to

√
N . In addition,

p is connected to all such primes, so

Lsl = π (
√

N ) − 1. (B7)

The minus one term corrects the overcount due to the self-loop
of prime p. This result allows us to simply count the number of
links among the neighbors of p regardless of self-loops. This
calculation is conveniently separated into two more parts.

(3) Links concerning primes less than p: let pi denote any
prime less than p [so i = 1, . . . ,π (p) − 1]. Then, if for some
prime p′ it is true that pp′ � N , it must be true that pip

′ < N .
In other words, all the pi are connected to all the primes to
which p is connected. Therefore, we need to count the number
of different connections that π (p) − 1 elements can form with
k elements (regardless of self loops, as explained above). We
can proceed in the following manner: the first of the pi , p1,
is connected to k − 1 elements. The second prime, p2, forms
k − 2 new bonds, since the connection to p1 is not counted
again. The elements in this succession can be written as k − j ,
which allows us to write the corresponding series as

Lpi<p =
π(p)−1∑

j=1

(k − j ) = [π (p) − 1]k −
π(p)−1∑

j=1

j

= [π (p) − 1]k − [π (p) − 1]π (p)

2
.

Making now use of the expression for k derived previously
yields

Lpi<p = 1

2
[π (p) − 1]

{
2

[
π

(
N

p

)
− 1

]
− π (p)

}
. (B8)

(4) Links not concerning primes less than p: consider any
pair of primes pi and pj such that pj > pi > p. Then, if
pipj � N , the chained inequalities ppi < ppj < N must hold
as well. This means that any link between pi and pj (both
greater than p) is a link among neighbors of p; in particular,
those that we have not counted yet. An easy way to count
such links is to count, for every pi , the number of pj such

that pipj � N . For any given pi we see that the value for
pj is bounded by pi < pj � N/pi , so there are π (N/pi) −
π (pi) = π (N/pi) − i links to be counted for prime pi . The
only thing left to do is adding the terms for all the pi . Note,
however, that the upper bound for i is given by i � π (

√
N )

(if both pi and pj are greater than
√

N , their product cannot
belong to the bipartite network). Finally, we can write

Lpi>p =
π(

√
N)∑

j=π(p)+1

[
π

(
N

pj

)
− j

]
. (B9)

Equation (B5) is obtained directly by adding Eqs. (B7)–
(B9) and dividing the result by Eq. (B6).

C(p) = Lsl + Lpi<p + Lpi>p

Lmax
. (B10)

We have obtained a numerical relation between the cluster-
ing coefficient C and the degree k as well, which is plotted in
Fig. 9 with the corresponding measurement on the stochastic
model.

APPENDIX C: ARITHMETIC FUNCTIONS

The perspective of number theory that we have presented in
this work provides us with a new approach to some arithmetic
functions as well. In this section, we present a few results
derived from our network representation of natural numbers
concerning several of them. We have been able to derive exact
and approximated expressions for the prime factors counting
function ω(n) (indeed, we have informally obtained its normal
order in accordance with the Hardy-Ramanujan theorem), the
sum of the prime divisors of a number n raised to the rth power
[which we denote by τr (n)] and, indirectly, the sum of divisors
of n to the rth power, σr (n).

10-3

10-2

10-1

1

1 101 102 103 104

C
(k

)

k

Real
Model

FIG. 9. (Color online) Clustering coefficient as a function of the
degree C(k).
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1. Prime factors counting function ω(n)

In the bipartite network that we have studied, every link
connects a prime and a composite. Therefore, counting all the
distinct links in the graph (i.e., with no multiplicities) yields
the sum of the distinct prime divisors of all the composites up
to N , ∑

ncomposite�N

ω(n) = π (N )
∑
kp

kpP (kp). (C1)

Since ω(p) = 1 for any prime, we can extend the latter sum to
all n ∈ [2,N ] simply as

N∑
n=2

ω(n) = π (N )

[
1 +

∑
kp

kpP (kp)

]
. (C2)

Expanding the sum over kp gives

π (N )
∑
kp

kpP (kp) = π

(
N

2

)
− π

(
N

3

)

+ 2

[
π

(
N

3

)
− π

(
N

4

)]
+ · · ·

=
∑
k�2

π

(
N

k

)
. (C3)

We can find an upper limit for the sum in the latter expression
considering that π (N/k) > 0 ⇔ N/k � 2, so only the terms
with k � �N/2� need to be added. We are finally led to the
interesting identity

N∑
n=2

ω(n) =
�N/2�∑
k=1

π

(
N

k

)
. (C4)

The arithmetic function ω(n) is given in terms of Eq. (C4) as
the difference between two consecutive sums, i.e., between the
sums up to n and n − 1,

ω(n) =
�n/2�∑
k=1

[
π

(n

k

)
− π

(
n − 1

k

)]
. (C5)

2. Sum of prime factors of n raised to the rth power τr (n)

A further analysis of Eq. (C5) reveals that φ(k; n) ≡ π ( n
k
) −

π ( n−1
k

) gives

φ(k; n) =
{

1 if n
k

is prime

0 otherwise
(C6)

This result allows us to write an expression for τr (n), which
we define as the sum of prime divisors of n raised to the rth
power,

τr (n) =
�n/2�∑
k=1

(n

k

)r

φ(k; n), (C7)

so ω(n) = τ0(n). However, we need to prove Eq. (C6).
First notice that φ(k; n) is equal to the number of primes

in the interval p ∈ ( n−1
k

, n
k
]. Let us thus count the number of

integers in the interval. Suppose that n
k

/∈ N. Then,

n

k
= qk + r

k
> q, (C8)

with q = � n
k
� ∈ N and r � 1 ∈ N. In addition, we have

n − 1

k
= qk + r − 1

k
� q. (C9)

Even though n−1
k

can be an integer (if r = 1), it does not
belong to the interval ( n−1

k
, n
k
], so every number in the interval

is greater than q. We thus conclude that if n
k

/∈ N there are no
integers (and therefore no primes) in the interval [ n

k
/∈ N ⇒

φ(k; n) = 0].
On the other hand, if n

k
∈ N, Eq. (C8) reads

n

k
= q, (C10)

while Eq. (C9) becomes

n − 1

k
= (q − 1) k + k − 1

k
� q − 1. (C11)

In this case, we see that every number in the interval x ∈
( n−1

k
, n
k
] lies between q − 1 < x < q (and, hence, they cannot

be integers) except for x = n
k

∈ N. We can thus conclude that,
if n

k
is prime, π ( n

k
) = π ( n−1

k
) + 1 and, therefore, φ(k; n) = 1.

Notice, however, that even though n
k

∈ N, if it is not prime,
π ( n

k
) = π ( n−1

k
) ⇔ φ(k; n) = 0.

3. Approximation of τr (n)

We can derive an approximation of Eq. (C5) exchanging
the sum for an integral and making use of the prime number
theorem [from Eq. (A3), we see that π (x) ∼ x/ ln x],

ω(n) = τ0(n) =
�n/2�∑
k=1

[
π

(n

k

)
− π

(
n − 1

k

)]

∼
∫ n/2

1

[
n

k ln n
k

− n − 1

k ln n−1
k

]
dk

∼
∫ n/2

1

dk

k ln n
k

=
∫ n

2

dp

p ln p
= ln ln n − ln ln 2.

(C12)

The latter expression yields, according to the Hardy-
Ramanujan theorem, the normal order of ω(n).

By the same line of reasoning, we can approximate any of
the τr (n) for r > 0,

τr (n) ∼
∫ n/2

1

(n

k

)r dk

k ln n
k

=
∫ n

2

pr−1

ln p
dp

=
∫ nr

2r

dq

q
= li(nr ) − li(2r ). (C13)

Eq. (C13) yields a very interesting result; in the particular case
of r = 1, we see that τ1(n) ∼ Li(n) ∼ π (n); i.e., the sum of
the distinct prime factors of n is close to the the number of
primes up to n.
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4. Sum of divisors of n raised to the rth power σr (n)

The proof of Eq. (C6) can be used to find an expression
for σr (n), defined as the sum of the divisors of n raised to the
rth power. Indeed, using Eqs. (C8) and (C9) we see that, if
n
k

/∈ N ⇒ � n
k
� = q = � n−1

k
�. On the other hand, if n

k
∈ N ⇒

� n
k
� = q but � n−1

k
� = q − 1. If we define ψ(k; n) ≡ � n

k
� −

� n−1
k

�, we can write

ψ(k; n) =
{

1 if n
k

∈ N

0 otherwise
. (C14)

As a consequence, we can easily sum all the divisors of n

raised to any power r simply as

σr (n) =
n∑

k=1

(n

k

)r

ψ(k; n) =
n∑

k=1

krψ(k; n). (C15)

The reason why the two sums in Eq. (C15) are equivalent is
that, if n

k
∈ N, both n

k
and k divide n.

APPENDIX D: THE PRIME COUNTING FUNCTION IN
THE STOCHASTIC MODEL

In this section we derive an expression for PN , the
probability that N is prime in a network chosen at random from
the set of all networks of size greater or equal to N generated by
our model. Since this probability cannot depend on numbers
that join the network after N , we only need to study these
networks up to N in the calculation. We can describe the state
of a particular realization up to N using the set of dichotomous
random variables (n2, . . . ,nN ), where

nk =
{

1 if k is prime
0 otherwise with k = 2, . . . ,N. (D1)

This allows us to write PN as

PN = 〈nN 〉 =
1∑

n2=0

· · ·
1∑

nN =0

nNρ (n2, . . . ,nN ) , (D2)

where 〈·〉 denotes the statistical average and ρ(n2, . . . ,nN ) is
the joint probability of the particular sequence (n2, . . . ,nN ). It
is convenient to define its characteristic function

ρ̂ (z2, . . . ,zN ) ≡
1∑

n2=0

· · ·
1∑

nN =0

z
n2
2 . . . z

nN

N ρ (n2, . . . ,nN ) .

(D3)

PN can be derived from this expression as

PN = ∂ρ̂

∂zN

∣∣∣∣
z2=z3=···=zN =1

. (D4)

The set of random variables (n2, . . . ,nN ) defines a sequence of
causal variables, in the sense that ni only depends on nj with
j < i. This implies that ρ(n2, . . . ,nN ) satisfies the following
Chapman-Kolmogorov equation:

ρ (n2, . . . ,nN ) = ρ (n2, . . . ,nN−1) Prob{nN |n2, . . . ,nN−1},
(D5)

with N � 3 and the initial condition ρ(n2 = 1) = 1. The
conditional probability that N is prime given the sequence
(n2, . . . ,nN−1) is the probability that N does not connect to
any of the existing primes below

√
N , that is

Prob{nN = 1|n2, . . . ,nN−1} =
�√N�∏
i=2

(
1 − 1

i

)ni

, (D6)

and Prob{nN = 0|n2, . . . ,nN−1} = 1 − Prob{nN =
1|n2, . . . ,nN−1}. Plugging this expression into Eq. (D5) and
then into Eq. (D3) leads to the following recurrence relation

ρ̂(z2, . . . ,zN )

= ρ̂(z2, . . . ,zN−1) + (zN − 1)

× ρ̂(z2α2, . . . ,z�√N�α�√N�,z�√N�+1, . . . ,zN−1), (D7)

where we have defined the compact notation αi ≡ 1 − 1/i.
Finally, by making use of Eq. (D4), we obtain

PN = ρ̂(α2, . . . ,α�√N�). (D8)

From Eq. (D7) it is clear that the random variables
(n2, . . . ,nN−1) are not statistically independent. This implies
that the exact solution of the problem can only be obtained by
solving Eq. (D7) and plugging the solution into Eq. (D8),
a task that is, currently, beyond our mathematical skills.
Nevertheless, it is possible to derive a very accurate mean-field
approximation. We start by expanding ρ̂(z2, . . . ,z�√N�) around
z1 = z2 = · · · = z�√N� = 1 as

PN = 1 +
�√N�∑
i=2

∂ρ̂

∂zi

∣∣∣∣
zi=1

βi + 1

2!

�√N�∑
i=2

�√N�∑
j=2

∂2ρ̂

∂zi∂zj

∣∣∣∣
zi=zj =1

×βiβj + 1

3!

�√N�∑
i=2

�√N�∑
j=2

�√N�∑
k=2

∂3ρ̂

∂zi∂zj ∂zk

∣∣∣∣
zi=zj =zk=1

×βiβjβk + · · · , (D9)

where we have used the convenient notation βi ≡ αi − 1 =
−1/i. All terms in the latter expansion that involve a derivative
of order higher than one with respect to any of the zi are null,
since ni(ni − 1) = 0 (ni is either 0 or 1). Using this fact and
the properties of generating functions, we can rewrite Eq. (D9)
as

PN = 1 +
∑

i

〈ni〉βi +
∑
i<j

〈ninj 〉βiβj

+
∑

i<j<k

〈ninjnk〉βiβjβk + · · · + 〈n2n3 · · · n�√N�〉

×β2β3 · · ·β�√N�. (D10)

Despite the fact that random variables ni are not statistically
independent, in most of the cases they are conditionally
independent. For instance, let us first consider the term 〈ninj 〉
for i > j . If j >

√
i then the only correlation between ni and

nj is given through their common history, that is, the sequence
of primes up to

√
j and, therefore, they are conditionally

independent. In the opposite case, ni is correlated to nj .
However, notice that (i) nj is only one out of

√
i variables that

have a direct influence on ni . (ii) The common history between
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ni and nj is even smaller than before, and (iii) the number

of correlated terms for a given N is
∑�√N�

j=3

√
j ∼ N3/4,

whereas the total number of terms scales as N2. Given these
considerations, it is quite reasonable to factorize 〈ninj 〉 ≈
〈ni〉〈nj 〉 = PiPj . A similar analysis can be performed for
higher-order correlation functions. Under this approximation,
Eq. (D10) can be written as

PN ≈ 1 +
∑

i

〈ni〉βi +
∑
i<j

〈ni〉〈nj 〉βiβj

+
∑

i<j<k

〈ni〉〈nj 〉〈nk〉βiβjβk + · · ·

+ 〈n2〉 · · · 〈n�√N�〉β2 · · · β�√N�. (D11)

The latter sum can be expressed as

PN ≈
1∑

m2=0

· · ·
1∑

m�√N�=0

(〈ni〉βi)
mi =

�√N�∏
i=2

(1 + 〈ni〉βi)

=
�√N�∏
i=2

(
1 − Pi

i

)
. (D12)

Finally, we can write

PN ≈ e
∑�√N�

i=2 ln(1− Pi
i

). (D13)

In the limit N → ∞, the sum in the exponent of the
exponential function is dominated by the upper limit and,
therefore, it can be approximated as

PN ≈ e− ∑�√N�
i=2

Pi
i . (D14)

APPENDIX E: THE ERDÖS-KAC THEOREM
IN THE STOCHASTIC MODEL

The Erdös-Kac theorem states that the quantity [ω(N ) −
ln ln N ]/

√
ln ln N behaves as a random variable that follows a

standard normal distribution. This is known as the fundamental
theorem of probabilistic number theory. In our model, this
quantity is, indeed, a random variable. In this section, we
develop an approximation for the probability that number N

in our model has ω distinct prime factors, P (ω|N ). To do
so, we first define the set of dichotomous random variables
(m2,m3, . . . ,m�√N�) as follows:

mk =
{

1 if k is a prime factor of N

0 otherwise

with k = 2, . . . ,�
√

N�. (E1)

In terms of these variables, we can write

P (ω|N ) =
1∑

n2=0

· · ·
1∑

n�√N�=0

ρ(n2, . . . ,n�√N�)
1∑

m2=0

· · ·
1∑

m�√N�=0

Prob{m2, . . . ,m�√N�|n2, . . . ,n�√N�}δω,1+∑
i mi

, (E2)

where δ·,· is the Kronecker δ function. The conditional
probability of variables mi satisfies

Prob{m2, . . . ,m�√N�|n2, . . . ,n�√N�}
= Prob{m2|n2}Prob{m3|n3,m2}Prob{m4|n4,m2,m3} · · · ,

(E3)

with

Prob{mj |nj ,m2,m3, . . . ,mj−1}

= δmj ,1
nj

j
θ

(√
N∏j−1

i=1 inimi

− j

)

+ δmj ,0

[
1 − nj

j
θ

(√
N∏j−1

i=1 inimi

− j

)]
. (E4)

In the latter expression, θ (x) is the Heaviside step function.
Notice that this step function accounts for the fact that j cannot
be a prime factor of N if there already exist smaller prime
factors such that j is above the square root of the ratio between
N and the product of all prime factors smaller than j . Dropping
this restriction would correspond to evaluate the distribution
of a random variable ω̂ that is an upper bound of ω. However,
in the limit N → ∞, since the probability of j being a prime
factor decreases as 1/j , most of the prime factors of N are small
numbers for which the argument of the Heaviside function in
Eq. (E4) is always positive. We then expect that, in such limit,

ω̂ → ω and so we can safely drop the Heaviside function in
Eq. (E4). Under this approximation, the generating function
of P (ω|N ) can be written as

P̂ (z|N )≡
∞∑

ω=1

zωP (ω|N ) = z

1∑
n2=0

· · ·
1∑

n�√N�=0

ρ(n2,. . . ,n�√N�)

×
�√N�∏
j=2

[
1 + (z − 1)

nj

j

]
, (E5)

and using the same mean-field approximation that we used in
the previous section, we can write

P̂ (z|N ) = z

�√N�∏
j=2

[
1 + (z − 1)

Pj

j

]
≈ ze

(z−1)
∑�√N�

j=2
Pj

j . (E6)

We now use Eq. (D14) to obtain

P̂ (z|N ) ≈ ze−(z−1)ln PN , (E7)

or, equivalently,

P (ω|N ) = PN

(ω − 1)!
[− ln PN ]ω−1 . (E8)

This is nothing but a Poisson distribution of average − ln PN ∼
ln ln N and standard deviation

√
ln ln N , which, for large N ,

converges to a Gaussian distribution.
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