JOB OPENING: POSTDOCTORAL POSITION
2023/02/03 | projects
We are looking for a highly motivated postdoctoral researcher to work at the interface between Network Science and Machine Learning.2023/02/03 | projects
We are looking for a highly motivated postdoctoral researcher to work at the interface between Network Science and Machine Learning.2022/11/18 | projects
Reducing redundant information to find simplifying patterns in data sets and complex networks is a scientific challenge in many knowledge fields. Our last article published in the journal Nature Communications presents a method to infer the dimensionality of complex networks through the application of hyperbolic geometrics, which capture the complexity of relational structures of the real world in many diverse domains.2021/06/01 | academic
Structural brain networks are spatially embedded networks whose architecture has been shaped by physical constraints and functional needs throughout evolution. Euclidean space is typically assumed as the natural geometry of the brain. However, distances in hyperbolic space offer a more accurate interpretation of the structure of connectomes across species, including multiscale self-similarity in the human brain. Implications extend to debates, like criticality in the brain, and applications, including tools for brain simulation.